
Ensemble Methods



• Ensemble is a Machine Learning concept in which the idea is 
to train multiple models using the same learning algorithm

• The ensembles take part in a bigger group of methods, called 
multiclassifiers, where a set of hundreds or thousands of 
learners with a common objective are fused together to solve 
the problem.

• The second group of multiclassifiers contain the hybrid 
methods. They use a set of learners too, but they can be 
trained using different learning techniques. Stacking is the 
most well-known.
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• The main causes of error in learning are due to noise, bias and 
variance. 

• Ensemble helps to minimize these factors. These methods are 
designed to improve the stability and the accuracy of Machine 
Learning algorithms. 

• Combinations of multiple classifiers decrease variance, 
especially in the case of unstable classifiers, and may produce 
a more reliable classification than a single classifier.
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• To use Bagging or Boosting you must select a base learner 
algorithm. For example, if we choose a classification tree, 
Bagging and Boosting would consist of a pool of trees as big as 
we want.
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• Bagging and Boosting get N learners by generating additional 
data in the training stage. N new training data sets are 
produced by random sampling with replacement from the 
original set. By sampling with replacement some observations 
may be repeated in each new training data set.
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• While the training stage is parallel for Bagging (i.e., each 
model is built independently), Boosting builds the new learner 
in a sequential way:
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• In Boosting algorithms each classifier is trained on data, taking 
into account the previous classifiers’ success. After each 
training step, the weights are redistributed. Misclassified data 
increases its weights to emphasise the most difficult cases.
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• Bagging is used when the goal is to reduce the variance of a 
decision tree classifier. Here the objective is to create several 
subsets of data from training sample chosen randomly with 
replacement. Each collection of subset data is used to train 
their decision trees
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• Suppose there are N observations and M features in training data 
set. A sample from training data set is taken randomly with 
replacement.

• A subset of M features are selected randomly and whichever 
feature gives the best split is used to split the node iteratively.

• The tree is grown to the largest.

• Above steps are repeated n times and prediction is given based on 
the aggregation of predictions from n number of trees.
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• Advantages:
– Reduces over-fitting of the model.

– Handles higher dimensionality data very well.

– Maintains accuracy for missing data.

• Disadvantages:
– Since final prediction is based on the mean predictions from subset 

trees, it won’t give precise values for the classification and regression 
model.
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• rfm = RandomForestClassifier(n_estimators=80, 
oob_score=True, n_jobs=-1, random_state=101, max_features
= 0.50, min_samples_leaf = 5)

• fit(x_train, y_train)

• predicted = rfm.predict_proba(x_test)
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• In Boosting algorithms each classifier is trained on data, taking 
into account the previous classifiers’ success. After each 
training step, the weights are redistributed. Misclassified data 
increases its weights to emphasise the most difficult cases.

December 19, 2019 14



December 19, 2019 15



• Boosting is used to create a collection of predictors. In this 
technique, learners are learned sequentially with early 
learners fitting simple models to the data and then analysing
data for errors. Consecutive trees (random sample) are fit and 
at every step, the goal is to improve the accuracy from the 
prior tree. When an input is misclassified by a hypothesis, its 
weight is increased so that next hypothesis is more likely to 
classify it correctly. This process converts weak learners into 
better performing model.
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• Draw a random subset of training samples d1 without 
replacement from the training set D to train a weak learner C1

• Draw second random training subset d2 without replacement 
from the training set and add 50 percent of the samples that 
were previously falsely classified/misclassified to train a weak 
learner C2

• Find the training samples d3 in the training set D on which C1 
and C2 disagree to train a third weak learner C3

• Combine all the weak learners via majority voting.

December 19, 2019 17



• Advantages:
– Supports different loss function (we have used ‘binary:logistic’ for this 

example).

– Works well with interactions.

• Disadvantages:
– Prone to over-fitting.

– Requires careful tuning of different hyper-parameters.
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• from xgboost import XGBClassifier

• xgb = XGBClassifier(objective=’binary:logistic’, 
n_estimators=70, seed=101)

• fit(x_train, y_train)

• predicted = xgb.predict_proba(x_test)
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• In Bagging the result is obtained by averaging the responses 
of the N learners (or majority vote). However, Boosting 
assigns a second set of weights, this time for the N classifiers, 
in order to take a weighted average of their estimates.
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• In the Boosting training stage, the algorithm allocates weights to 
each resulting model. A learner with good a classification result on 
the training data will be assigned a higher weight than a poor one. 
So when evaluating a new learner, Boosting needs to keep track of 
learners’ errors, too. Let’s see the differences in the procedures:

• Some of the Boosting techniques include an extra-condition to keep 
or discard a single learner. For example, in AdaBoost, the most 
renowned, an error less than 50% is required to maintain the 
model; otherwise, the iteration is repeated until achieving a learner 
better than a random guess.
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• Slides from https://www.cs.cmu.edu

• Information gain is one criteria to decide on the

• attribute.

https://www.cs.cmu.edu/~ggordon/10601/recitations/rec08/Rec08_Oct21.ppt


• Imagine:

• 1. Someone is about to tell you your own name

• 2. You are about to observe the outcome of a dice roll

• 2. You are about to observe the outcome of a coin flip

• 3. You are about to observe the outcome of a biased coin flip

• Each situation have a different amount of uncertainty

• as to what outcome you will observe.



• Information:

• reduction in uncertainty (amount of surprise in the outcome)
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is head
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If the probability of this event happening is small and it happens 
the information is large.



• The expected amount of information when observing the output of a random 
variable X

2( ) ( ( )) ( ) ( ) ( ) log ( )i i i i

i i

H X E I X p x I x p x p x= = = − 

If there X can have 8 outcomes and all are equally likely

2( ) 1/8log 1/8 3
i

H X == − = bits



• If  there are k possible outcomes

• Equality holds when all outcomes are equally likely 

• The more the probability distribution

• the deviates from 

• uniformity

• the lower the entropy

2( ) logH X k



• Entropy measures the purity 
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• IG(X,Y)=H(X)-H(X|Y)

Reduction in uncertainty by knowing Y

Information gain: 
(information before split) – (information after split)



• Information gain: 

• (information before split) – (information after split)



X1 X2 Y Count

T T + 2

T F + 2

F T - 5

F F + 1

Attributes Labels

IG(X1,Y) =  H(Y) – H(Y|X1)

H(Y)       = - (5/10) log(5/10) -5/10log(5/10) = 1

H(Y|X1) =  P(X1=T)H(Y|X1=T) + P(X1=F) H(Y|X1=F)

=  4/10 (1log 1 + 0 log 0) +6/10 (5/6log 5/6 +1/6log1/6)

= 0.39

Information gain (X1,Y)= 1-0.39=0.61

Which one do we choose X1 or X2?



X1 X2 Y Count

T T + 2

T F + 2

F T - 5

F F + 1

Information gain (X1,Y)= 0.61

Information gain (X2,Y)= 0.12

Pick X1
Pick  the  variable which provides 

the most  information gain about Y
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One branch

The other branch



• The number of possible values influences the information gain.

• The more possible values, the higher the gain (the more likely it is to form small, 
but pure partitions)



• Purity (Diversity) Measures:

• – Gini (population diversity)

• – Information Gain

• – Chi-square Test



• You can perfectly fit to any training data

• Zero bias, high variance

• Two approaches:
• 1. Stop growing the tree when further splitting the data does not yield an 

improvement

• 2. Grow a full tree, then prune the tree, by eliminating nodes.



• Bagging or bootstrap aggregation a technique for reducing the 
variance of an estimated prediction function. 

• For classification, a committee of trees each

• cast a vote for the predicted class.



The basic idea:

randomly draw datasets with replacement from the 
training data, each sample the same size as the original training set
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Z = {(x1, y1), (x2, y2), . . . , (xN, yN)}

Z*b   where = 1,.., B..  
The prediction at input x
when bootstrap sample
b is used for training

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf (Chapter 8.7)

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf


• Generated a sample of size N = 30, with two

• classes and p = 5 features, each having a

• standard Gaussian distribution with pairwise

• Correlation 0.95. 

• The response Y was generated according to 

• Pr(Y = 1|x1 ≤ 0.5) = 0.2,

• Pr(Y = 0|x1 > 0.5) = 0.8.



Notice the bootstrap trees are different than the original tree



Hastie

Treat the voting
Proportions as 
probabilities

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf Example 8.7.1

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf


• Random forest classifier, an extension to

• bagging which uses de-correlated trees.
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At each node in choosing the split feature
choose only among m<M features



Create decision tree
from each bootstrap sample
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• Available package:

• http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

• To read more:

• http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf


• The AdaBoost Algorithm begins by training a decision tree in which each 
observation is assigned an equal weight. After evaluating the first tree, we 
increase the weights of those observations that are difficult to classify and 
lower the weights for those that are easy to classify. The second tree is 
therefore grown on this weighted data. Here, the idea is to improve upon 
the predictions of the first tree.

• Our new model is therefore Tree 1 + Tree 2. We then compute the 
classification error from this new 2-tree ensemble model and grow a third 
tree to predict the revised residuals. We repeat this process for a specified 
number of iterations. Subsequent trees help us to classify observations 
that are not well classified by the previous trees. Predictions of the final 
ensemble model is therefore the weighted sum of the predictions made 
by the previous tree models.
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• retrains the algorithm iteratively by choosing the training set 
based on accuracy of previous training.

• The weight-age of each trained classifier at any iteration 
depends on the accuracy achieved.

• How to assign weight to each classifier?

• A classifier with 50% accuracy is given a weight of zero, and a 
classifier with less than 50% accuracy is given negative weight.
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• GBM, short for “Gradient Boosting Machine”, is introduced by Friedman in 
2001. It is also known as MART (Multiple Additive Regression Trees) and 
GBRT (Gradient Boosted Regression Trees).

• Gradient Boosting trains many models in a gradual, additive and 
sequential manner. The major difference between AdaBoost and Gradient 
Boosting Algorithm is how the two algorithms identify the shortcomings of 
weak learners (eg. decision trees). While the AdaBoost model identifies 
the shortcomings by using high weight data points, gradient boosting 
performs the same by using gradients in the loss function (y=ax+b+e , e 
needs a special mention as it is the error term). The loss function is a 
measure indicating how good are model’s coefficients are at fitting the 
underlying data. A logical understanding of loss function would depend on 
what we are trying to optimise.
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• Use many different learners using separate sets of attributes. 
It does not matter if you use the same learner algorithm or if 
they share some/all attributes; the key is that they must be 
different enough in order to guarantee diversification

• The meta-model can be a classification tree, a random forest, 
a support vector machine… Any classification learner is valid.
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