
Ensemble Methods

• Ensemble is a Machine Learning concept in which the idea is
to train multiple models using the same learning algorithm

• The ensembles take part in a bigger group of methods, called
multiclassifiers, where a set of hundreds or thousands of
learners with a common objective are fused together to solve
the problem.

• The second group of multiclassifiers contain the hybrid
methods. They use a set of learners too, but they can be
trained using different learning techniques. Stacking is the
most well-known.

December 19, 2019 2

• The main causes of error in learning are due to noise, bias and
variance.

• Ensemble helps to minimize these factors. These methods are
designed to improve the stability and the accuracy of Machine
Learning algorithms.

• Combinations of multiple classifiers decrease variance,
especially in the case of unstable classifiers, and may produce
a more reliable classification than a single classifier.

December 19, 2019 3

• To use Bagging or Boosting you must select a base learner
algorithm. For example, if we choose a classification tree,
Bagging and Boosting would consist of a pool of trees as big as
we want.

December 19, 2019 4

• Bagging and Boosting get N learners by generating additional
data in the training stage. N new training data sets are
produced by random sampling with replacement from the
original set. By sampling with replacement some observations
may be repeated in each new training data set.

December 19, 2019 5

December 19, 2019 6

• While the training stage is parallel for Bagging (i.e., each
model is built independently), Boosting builds the new learner
in a sequential way:

December 19, 2019 7

• In Boosting algorithms each classifier is trained on data, taking
into account the previous classifiers’ success. After each
training step, the weights are redistributed. Misclassified data
increases its weights to emphasise the most difficult cases.

December 19, 2019 8

• Bagging is used when the goal is to reduce the variance of a
decision tree classifier. Here the objective is to create several
subsets of data from training sample chosen randomly with
replacement. Each collection of subset data is used to train
their decision trees

December 19, 2019 9

December 19, 2019 10

• Suppose there are N observations and M features in training data
set. A sample from training data set is taken randomly with
replacement.

• A subset of M features are selected randomly and whichever
feature gives the best split is used to split the node iteratively.

• The tree is grown to the largest.

• Above steps are repeated n times and prediction is given based on
the aggregation of predictions from n number of trees.

December 19, 2019 11

• Advantages:
– Reduces over-fitting of the model.

– Handles higher dimensionality data very well.

– Maintains accuracy for missing data.

• Disadvantages:
– Since final prediction is based on the mean predictions from subset

trees, it won’t give precise values for the classification and regression
model.

December 19, 2019 12

• rfm = RandomForestClassifier(n_estimators=80,
oob_score=True, n_jobs=-1, random_state=101, max_features
= 0.50, min_samples_leaf = 5)

• fit(x_train, y_train)

• predicted = rfm.predict_proba(x_test)

December 19, 2019 13

• In Boosting algorithms each classifier is trained on data, taking
into account the previous classifiers’ success. After each
training step, the weights are redistributed. Misclassified data
increases its weights to emphasise the most difficult cases.

December 19, 2019 14

December 19, 2019 15

• Boosting is used to create a collection of predictors. In this
technique, learners are learned sequentially with early
learners fitting simple models to the data and then analysing
data for errors. Consecutive trees (random sample) are fit and
at every step, the goal is to improve the accuracy from the
prior tree. When an input is misclassified by a hypothesis, its
weight is increased so that next hypothesis is more likely to
classify it correctly. This process converts weak learners into
better performing model.

December 19, 2019 16

• Draw a random subset of training samples d1 without
replacement from the training set D to train a weak learner C1

• Draw second random training subset d2 without replacement
from the training set and add 50 percent of the samples that
were previously falsely classified/misclassified to train a weak
learner C2

• Find the training samples d3 in the training set D on which C1
and C2 disagree to train a third weak learner C3

• Combine all the weak learners via majority voting.

December 19, 2019 17

• Advantages:
– Supports different loss function (we have used ‘binary:logistic’ for this

example).

– Works well with interactions.

• Disadvantages:
– Prone to over-fitting.

– Requires careful tuning of different hyper-parameters.

December 19, 2019 18

• from xgboost import XGBClassifier

• xgb = XGBClassifier(objective=’binary:logistic’,
n_estimators=70, seed=101)

• fit(x_train, y_train)

• predicted = xgb.predict_proba(x_test)

December 19, 2019 19

• In Bagging the result is obtained by averaging the responses
of the N learners (or majority vote). However, Boosting
assigns a second set of weights, this time for the N classifiers,
in order to take a weighted average of their estimates.

December 19, 2019 20

• In the Boosting training stage, the algorithm allocates weights to
each resulting model. A learner with good a classification result on
the training data will be assigned a higher weight than a poor one.
So when evaluating a new learner, Boosting needs to keep track of
learners’ errors, too. Let’s see the differences in the procedures:

• Some of the Boosting techniques include an extra-condition to keep
or discard a single learner. For example, in AdaBoost, the most
renowned, an error less than 50% is required to maintain the
model; otherwise, the iteration is repeated until achieving a learner
better than a random guess.

December 19, 2019 21

December 19, 2019 22

December 19, 2019 23

• Slides from https://www.cs.cmu.edu

• Information gain is one criteria to decide on the

• attribute.

https://www.cs.cmu.edu/~ggordon/10601/recitations/rec08/Rec08_Oct21.ppt

• Imagine:

• 1. Someone is about to tell you your own name

• 2. You are about to observe the outcome of a dice roll

• 2. You are about to observe the outcome of a coin flip

• 3. You are about to observe the outcome of a biased coin flip

• Each situation have a different amount of uncertainty

• as to what outcome you will observe.

• Information:

• reduction in uncertainty (amount of surprise in the outcome)

2 2

1
() log log ()

()
I E p x

p x
= = −

• Observing the outcome of a coin flip
is head

2. Observe the outcome of a dice is
6

2log 1/ 2 1I = − =

2log 1/ 6 2.58I = − =

If the probability of this event happening is small and it happens
the information is large.

• The expected amount of information when observing the output of a random
variable X

2() (()) () () () log ()i i i i

i i

H X E I X p x I x p x p x= = = −

If there X can have 8 outcomes and all are equally likely

2() 1/8log 1/8 3
i

H X == − = bits

• If there are k possible outcomes

• Equality holds when all outcomes are equally likely

• The more the probability distribution

• the deviates from

• uniformity

• the lower the entropy

2() logH X k

• Entropy measures the purity

4 +

4 -

8 +

0 -

The distribution is less uniform
Entropy is lower
The node is purer

2() () log ()i i

i

H X p x p x= −

(|) () (|)j j

j

H X Y p y H X Y y= − =

2() (|) log (|)j i j i j

j i

p y p x y p x y= −

• IG(X,Y)=H(X)-H(X|Y)

Reduction in uncertainty by knowing Y

Information gain:
(information before split) – (information after split)

• Information gain:

• (information before split) – (information after split)

X1 X2 Y Count

T T + 2

T F + 2

F T - 5

F F + 1

Attributes Labels

IG(X1,Y) = H(Y) – H(Y|X1)

H(Y) = - (5/10) log(5/10) -5/10log(5/10) = 1

H(Y|X1) = P(X1=T)H(Y|X1=T) + P(X1=F) H(Y|X1=F)

= 4/10 (1log 1 + 0 log 0) +6/10 (5/6log 5/6 +1/6log1/6)

= 0.39

Information gain (X1,Y)= 1-0.39=0.61

Which one do we choose X1 or X2?

X1 X2 Y Count

T T + 2

T F + 2

F T - 5

F F + 1

Information gain (X1,Y)= 0.61

Information gain (X2,Y)= 0.12

Pick X1
Pick the variable which provides

the most information gain about Y

X1 X2 Y Count

T T + 2

T F + 2

F T - 5

F F + 1

One branch

The other branch

• The number of possible values influences the information gain.

• The more possible values, the higher the gain (the more likely it is to form small,
but pure partitions)

• Purity (Diversity) Measures:

• – Gini (population diversity)

• – Information Gain

• – Chi-square Test

• You can perfectly fit to any training data

• Zero bias, high variance

• Two approaches:
• 1. Stop growing the tree when further splitting the data does not yield an

improvement

• 2. Grow a full tree, then prune the tree, by eliminating nodes.

• Bagging or bootstrap aggregation a technique for reducing the
variance of an estimated prediction function.

• For classification, a committee of trees each

• cast a vote for the predicted class.

The basic idea:

randomly draw datasets with replacement from the
training data, each sample the same size as the original training set

N
 e

xa
m

p
le

s
Create bootstrap samples

from the training data

..
..
…

M features

N
 e

xa
m

p
le

s
Construct a decision tree

..
..
…

M features

N
 e

xa
m

p
le

s

..
..
…

..
..
…

Take the
majority

vote

M features

Z = {(x1, y1), (x2, y2), . . . , (xN, yN)}

Z*b where = 1,.., B..
The prediction at input x
when bootstrap sample
b is used for training

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf (Chapter 8.7)

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

• Generated a sample of size N = 30, with two

• classes and p = 5 features, each having a

• standard Gaussian distribution with pairwise

• Correlation 0.95.

• The response Y was generated according to

• Pr(Y = 1|x1 ≤ 0.5) = 0.2,

• Pr(Y = 0|x1 > 0.5) = 0.8.

Notice the bootstrap trees are different than the original tree

Hastie

Treat the voting
Proportions as
probabilities

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf Example 8.7.1

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

• Random forest classifier, an extension to

• bagging which uses de-correlated trees.

N
 e

xa
m

p
le

s
Training Data

M features

N
 e

xa
m

p
le

s
Create bootstrap samples

from the training data

..
..
…

M features

N
 e

xa
m

p
le

s
Construct a decision tree

..
..
…

M features

N
 e

xa
m

p
le

s

..
..
…

M features

At each node in choosing the split feature
choose only among m<M features

Create decision tree
from each bootstrap sample

N
 e

xa
m

p
le

s

..
..
…

..
..
…

M features

N
 e

xa
m

p
le

s

..
..
…

..
..
…

Take he
majority

vote

M features

• Available package:

• http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

• To read more:

• http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

• The AdaBoost Algorithm begins by training a decision tree in which each
observation is assigned an equal weight. After evaluating the first tree, we
increase the weights of those observations that are difficult to classify and
lower the weights for those that are easy to classify. The second tree is
therefore grown on this weighted data. Here, the idea is to improve upon
the predictions of the first tree.

• Our new model is therefore Tree 1 + Tree 2. We then compute the
classification error from this new 2-tree ensemble model and grow a third
tree to predict the revised residuals. We repeat this process for a specified
number of iterations. Subsequent trees help us to classify observations
that are not well classified by the previous trees. Predictions of the final
ensemble model is therefore the weighted sum of the predictions made
by the previous tree models.

December 19, 2019 57

• retrains the algorithm iteratively by choosing the training set
based on accuracy of previous training.

• The weight-age of each trained classifier at any iteration
depends on the accuracy achieved.

• How to assign weight to each classifier?

• A classifier with 50% accuracy is given a weight of zero, and a
classifier with less than 50% accuracy is given negative weight.

December 19, 2019 58

December 19, 2019 59

• GBM, short for “Gradient Boosting Machine”, is introduced by Friedman in
2001. It is also known as MART (Multiple Additive Regression Trees) and
GBRT (Gradient Boosted Regression Trees).

• Gradient Boosting trains many models in a gradual, additive and
sequential manner. The major difference between AdaBoost and Gradient
Boosting Algorithm is how the two algorithms identify the shortcomings of
weak learners (eg. decision trees). While the AdaBoost model identifies
the shortcomings by using high weight data points, gradient boosting
performs the same by using gradients in the loss function (y=ax+b+e , e
needs a special mention as it is the error term). The loss function is a
measure indicating how good are model’s coefficients are at fitting the
underlying data. A logical understanding of loss function would depend on
what we are trying to optimise.

December 19, 2019 60

December 19, 2019 61

December 19, 2019 62

December 19, 2019 63

• Use many different learners using separate sets of attributes.
It does not matter if you use the same learner algorithm or if
they share some/all attributes; the key is that they must be
different enough in order to guarantee diversification

• The meta-model can be a classification tree, a random forest,
a support vector machine… Any classification learner is valid.

December 19, 2019 64

December 19, 2019 65

December 19, 2019 66

December 19, 2019 67

