Machine Learning
Notes 12

Ensemble Methods

//
s SOl
e

Ensemble methods

Ensemble is a Machine Learning concept in which the idea is
to train multiple models using the same learning algorithm

The ensembles take part in a bigger group of methods, called
multiclassifiers, where a set of hundreds or thousands of
learners with a common objective are fused together to solve
the problem.

The second group of multiclassifiers contain the hybrid
methods. They use a set of learners too, but they can be
trained using different learning techniques. Stacking is the
most well-known.

Ensemble methods

* The main causes of error in learning are due to noise, bias and
variance.

 Ensemble helps to minimize these factors. These methods are
designed to improve the stability and the accuracy of Machine
Learning algorithms.

 Combinations of multiple classifiers decrease variance,
especially in the case of unstable classifiers, and may produce
a more reliable classification than a single classifier.

Ensemble methods

To use Bagging or Boosting you must select a base learner
algorithm. For example, if we choose a classification tree,

Bagging and Boosting would consist of a pool of trees as big as
we want.

bagqging boosting

%ﬁﬁﬁ %ﬂﬁﬁ

@@@@ @@@@

N learners

N learners

December 19, 2019

Ensemble methods

* Bagging and Boosting get N learners by generating additional
data in the training stage. N new training data sets are
produced by random sampling with replacement from the
original set. By sampling with replacement some observations
may be repeated in each new training data set.

=

Ensemble methods

bagging boosting

complete training set random sampling wit B
K replacement replacement
: over weighted data

December 19, 2019

Ensemble methods

* While the training stage is parallel for Bagging (i.e., each
model is built independently), Boosting builds the new learner
in a sequential way:

bagging boosting

: parallel sequential
Decq® $:

Ensemble methods

* In Boosting algorithms each classifier is trained on data, taking
into account the previous classifiers’ success. After each
training step, the weights are redistributed. Misclassified data
increases its weights to emphasise the most difficult cases.

Bagging (Bootstrap AGGregation)

* Bagging is used when the goal is to reduce the variance of a
decision tree classifier. Here the objective is to create several
subsets of data from training sample chosen randomly with
replacement. Each collection of subset data is used to train

their decision trees

December 19, 2019

=

Bagging (Bootstrap AGGregation)

Partitioning of data

Goal to achieve

Methods used

Functions to combine single model

Example

December 19, 2019

Random

Minimum variance
Random subspace
Weighted average

Random Forest

10

Bagging Steps

* Suppose there are N observations and M features in training data
set. A sample from training data set is taken randomly with
replacement.

A subset of M features are selected randomly and whichever
feature gives the best split is used to split the node iteratively.

* The treeis grown to the largest.

 Above steps are repeated n times and prediction is given based on
the aggregation of predictions from n number of trees.

Advantages vs Disadvantages

* Advantages:
— Reduces over-fitting of the model.
— Handles higher dimensionality data very well.
— Maintains accuracy for missing data.

* Disadvantages:

— Since final prediction is based on the mean predictions from subset
trees, it won’t give precise values for the classification and regression
model.

December 19, 2019

12

Python

* rfm = RandomForestClassifier(n_estimators=80,
oob_score=True, n_jobs=-1, random_state=101, max_features

= 0.50, min_samples_leaf = 5)
e fit(x_train, y_train)
e predicted = rfm.predict_proba(x_test)

Boosting

* In Boosting algorithms each classifier is trained on data, taking
into account the previous classifiers’ success. After each
training step, the weights are redistributed. Misclassified data
increases its weights to emphasise the most difficult cases.

Boosting

Partitioning of data

Goal to achieve
Methods used
Functions to combine single model

Example

December 19, 2019

Higher vote to misclassified
samples

Increase accuracy
Gradient descent
Weighted majority vote

Ada Boost

15

Boosting

Boosting is used to create a collection of predictors. In this
technique, learners are learned sequentially with early
learners fitting simple models to the data and then analysing
data for errors. Consecutive trees (random sample) are fit and
at every step, the goal is to improve the accuracy from the
prior tree. When an input is misclassified by a hypothesis, its
weight is increased so that next hypothesis is more likely to
classify it correctly. This process converts weak learners into
better performing model.

Boosting Steps:

Draw a random subset of training samples d1 without
replacement from the training set D to train a weak learner C1

Draw second random training subset d2 without replacement
from the training set and add 50 percent of the samples that
were previously falsely classified/misclassified to train a weak
learner C2

Find the training samples d3 in the training set D on which C1
and C2 disagree to train a third weak learner C3

Combine all the weak learners via majority voting.

Advantages vs Disadvantages

* Advantages:

— Supports different loss function (we have used ‘binary:logistic’ for this
example).

— Works well with interactions.
* Disadvantages:
— Prone to over-fitting.
— Requires careful tuning of different hyper-parameters.

December 19, 2019 18

Python

* from xgboost import XGBClassifier

* xgb = XGBClassifier(objective="binary:logistic/,
n_estimators=70, seed=101)

e fit(x_train, y_train)
* predicted = xgb.predict_proba(x_test)

4

How does the classification stage work

* In Bagging the result is obtained by averaging the responses
of the N learners (or majority vote). However, Boosting
assigns a second set of weights, this time for the N classifiers,

in order to take a weighted average of their estimates.
' bagqging boosting

Deccli

..

In the Boosting training stage, the algorithm allocates weights to
each resulting model. A learner with good a classification result on
the training data will be assigned a higher weight than a poor one.
So when evaluating a new learner, Boosting needs to keep track of
learners’ errors, too. Let’s see the differences in the procedures:

Some of the Boosting techniques include an extra-condition to keep
or discard a single learner. For example, in AdaBoost, the most
renowned, an error less than 50% is required to maintain the
model; otherwise, the iteration is repeated until achieving a learner
better than a random guess.

December 19, 2019

bagqging

@

keep

train & keep

boosting

.H@

W
l_‘

jluate

22

~Random Forest

December 19, 2019

23

Information Gain

e Slides from https://www.cs.cmu.edu

* Information gain is one criteria to decide on the
e attribute.

https://www.cs.cmu.edu/~ggordon/10601/recitations/rec08/Rec08_Oct21.ppt

Information

* Imagine:

e 1.Someone is about to tell you your own name

e 2.You are about to observe the outcome of a dice roll

* 2.You are about to observe the outcome of a coin flip

* 3. You are about to observe the outcome of a biased coin flip

e Each situation have a different amount of uncertainty
* as to what outcome you will observe.

Information

* Information:
e reduction in uncertainty (amount of surprise in the outcome)

I(E) = log, —— =~log, p(x)
p()

If the probability of this event happening is small and it happens
the information is large.

e Observing the outcome of a coin flip =——p | =—l0g,1/2=1
is head
2. Observe the outcome of a diceis =——p | =—l0g,1/6=2.58

6

Entropy

. The expected amount of information when observing the output of a random
variable X

H(X)=E(I(X)) :Z p(Xi)I (Xi) :_Z p(Xi)|ng p(xi)

If there X can have 8 outcomes and all are equally likely

H(X)= —Zl/8|ogzll8 =3 bits

Entropy

If there are k possible outcomes

H(X)<log,k

Equality holds when all outcomes are equally likely

1

The more the probability dis g
the deviates from 06l

entropy

uniformity 04

the lower the entropy 0l

Entropy, purify

gy =0

=t N
T

e

Entropy measures the purity

The distribution is less uniform
Entropy is lower
The node is purer

Conditional entropy

H (X) — _Z p(xi) Iogz p(Xi)
H(XY) =—Z pCy) H(X Y =y;)

== p(y;)2_ p(x 1y log, p(x1y;)

Information gain
* IG(X,Y)=H(X)-H(X|Y)

Reduction in uncertainty by knowing Y

Information gain:
(information before split) — (information after split)

A

-~

Information Gain

* Information gain:
e (information before split) — (information after split)

Example

Attributes Labels

_ Which one do we choose X1 or X27?

+

I o T
a4

2
+ 2
5
1

IG(X1,Y) = H(Y) — H(Y|X1)

H(Y) =-(5/10) log(5/10) -5/10log(5/10) = 1
H(Y|X1) = P(X1=T)H(Y[X1=T) + P(X1=F) H(Y|X1=F)
= 4/10 (1log 1 + 0 log 0) +6/10 (5/6log 5/6 +1/610g1/6)
=0.39

Information gain (X1,Y)= 1-0.39=0.61

4

Which one do we choose?

mall B B I
n|la4]|m|4

Information gain (X1,Y)=0.61
Information gain (X2,Y)=0.12

Pick the variable which provides
the most information gain about Y Pick X1

=

Recurse on branches

One branch

m|Tm |4
Sl I I

The other branch

Caveats

 The number of possible values influences the information gain.

 The more possible values, the higher the gain (the more likely it is to form small,
but pure partitions)

Purity (diversity) meaéures

e Purity (Diversity) Measures:
 —Gini (population diversity)
 —Information Gain

e —Chi-square Test

Overfitting

You can perfectly fit to any training data
Zero bias, high variance

Two approaches:

1. Stop growing the tree when further splitting the data does not yield an
improvement

2. Grow a full tree, then prune the tree, by eliminating nodes.

Bagging
* Bagging or bootstrap aggregation a technique for reducing the
variance of an estimated prediction function.

* For classification, a committee of trees each
. cast a vote for the predicted class.

Bootstrap

The basic idea:

randomly draw datasets with replacement from the
training data, each sample the same size as the original training set

-oo----- Bootstrap
----- replications

oo | ieme=mm-mmo227 Bootstrap
B I samples

)
_________________ Trainjng
sample

&=

Bagging

Create bootstrap samples
from the training data

M features_|->

—>

N examples

Random Forest CI"assifier

Construct a decision tree
ﬁ
M features_|->

Location
Similarity
—p>

Gene Expressiol Domain-motif,
. Interact
Neighbor - .
Function Similarity Degree Gene Expression

Gnteract) (Not interact) Onteract) (Not interact) (Interact) (Not interact)

N examples

Random Forest Classifier

N examples

M features

Lacatian
Similaricy

e ntersct
Gene Exprassior)
Function imilal

Neighbar
rscess similarit

/‘ N
ieiqhbar
Function Sivilarity

Neighbar
rscess similarit

i N
AR
Fumetion Sivilarity

Take the
majority
vote

Bagging
Z-= {(Xlr yl)l (XZI yz)l ey (XNI yN)}

Z® where=1,..,B.. o _
The prediction at input x

when bootstrap sample
b is used for training

B
fbag(i’) — Z Jg*b('i*)-

http://www-stat.stanford.edu/~hastie/Papers/ESLIl.pdf (Chapter 8.7)

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

Bagging : an simulated example

Generated a sample of size N = 30, with two
classes and p =5 features, each having a
standard Gaussian distribution with pairwise
Correlation 0.95.

The response Y was generated according to
Pr(Y=1/x1<0.5)=0.2,
Pr(Y=0/x1>0.5)=0.8.

Bagging

Notice the bootstrap trees are different than the original tree

Original Tree b=1 b=2

®.1=02385 x.1=0555 x®.2 =0.205

. |
0 1 0 0 | l
0
1 0 a
01 1 0 01 o 1

b=3 b=4

x2=0285 x.3 < 0.985

-

Bagging

Consensus

Prokwty

Wy L Original Tree
e \
o

1 Treat the voting
| gy 209 T Proportions as
probabilities

Test Emor
0,385
|

0.25
|

0.20
m
)
£
I
i

MNumber of Bootstrap Samples

FIGURE B.10. Error curves for the bagging example of Figure 8.9. Shoun is
the test error of the original tree and bagged trees as a function of the number of
bootstrap samples. The orange points correspond to the consensus vote, while the
green points average the probabilities.
Hastie

bagging helps under squared-error loss, in short because averaging reduces

http://www-stat.stanford.edu/~hastie/Papers/ESLIl.pdf Example 8.7.1

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

Random forest classifier

 Random forest classifier, an extension to
e bagging which uses de-correlated trees.

F

/

g

Random Forest Claé’sifier

Training Data

M features

N examples

Random Forest CI-'assifier

Create bootstrap samples
from the training data

M features_|->-
»-

N examples

»-

Random Forest CI"assifier

Construct a decision tree
ﬁ
M features_|->

Location
Similarity
—p>

Gene Expressiol Domain-motif,
. Interact
Neighbor - .
Function Similarity Degree Gene Expression

Gnteract) (Not interact) Onteract) (Not interact) (Interact) (Not interact)

N examples

Random Forest Classifier

At each node in choosing the split feature
choose only among m<M features

Location
— Similarity
M featu res_|->

(Interact

- Interact

Nel.ghbc.)r. . Degree Gene Expression
Function Similarit

Gnteract) G\lot interact) (Interact) G\Iotinteraca (Interact) G\Iot interacD

Gene Expressio

N examples

Random Forest Classifier

Create decision tree
from each bootstrap sample

‘‘‘‘‘‘‘‘‘

M features_|->

—>

N examples

Random Forest Classifier

N examples

M features

Lacatian
Similaricy

e ntersct
Gene Exprassior)
Function imilal

Neighbar
rscess similarit

/‘ N
ieiqhbar
Function Sivilarity

Neighbar
rscess similarit

i N
AR
Fumetion Sivilarity

Take he
majority
vote

008
l

Correlation between Trees
0.04
|

0.02
|
tHhe

0.00
1

MNumber of Randomly Selected Splitting Variables m

FIGURE 15.9. Correlations between pairs of trees drawn by a random-forest
regression algorithm, as a function of m. The boxplots represent the correlations
at 600 randomly chosen prediction points x.

Random forest

* Available package:
http://www.stat.berkeley.edu/~breiman/RandomForests/cc home.htm

e Toread more:

* http://www-stat.stanford.edu/~hastie/Papers/ESLI|.pdf

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

Adaboost

The AdaBoost Algorithm begins by training a decision tree in which each
observation is assigned an equal weight. After evaluating the first tree, we
increase the weights of those observations that are difficult to classify and
lower the weights for those that are easy to classify. The second tree is
therefore grown on this weighted data. Here, the idea is to improve upon
the predictions of the first tree.

Our new model is therefore Tree 1 + Tree 2. We then compute the
classification error from this new 2-tree ensemble model and grow a third
tree to predict the revised residuals. We repeat this process for a specified
number of iterations. Subsequent trees help us to classify observations
that are not well classified by the previous trees. Predictions of the final
ensemble model is therefore the weighted sum of the predictions made
by the previous tree models.

In short Ada-boost

* retrains the algorithm iteratively by choosing the training set
based on accuracy of previous training.

* The weight-age of each trained classifier at any iteration
depends on the accuracy achieved.

* How to assign weight to each classifier?

* A classifier with 50% accuracy is given a weight of zero, and a
classifier with less than 50% accuracy is given negative weight.

Adaboost A

[lee] /T_»:/ [/

J\ $\5\8

Figure 7-7. AdaBoost sequential training with instance weight updates

eeeeeeeeeeeeeee

Gradient Boosting

GBM, short for “Gradient Boosting Machine”, is introduced by Friedman in
2001. It is also known as MART (Multiple Additive Regression Trees) and
GBRT (Gradient Boosted Regression Trees).

Gradient Boosting trains many models in a gradual, additive and
sequential manner. The major difference between AdaBoost and Gradient
Boosting Algorithm is how the two algorithms identify the shortcomings of
weak learners (eg. decision trees). While the AdaBoost model identifies
the shortcomings by using high weight data points, gradient boosting
performs the same by using gradients in the loss function (y=ax+b+e, e
needs a special mention as it is the error term). The loss function is a
measure indicating how good are model’s coefficients are at fitting the
underlying data. A logical understanding of loss function would depend on
what we are trying to optimise.

Bootstrap aggregating or
Bagging is a ensemble
meta-algorithm combining
predictions from muItiﬁIe-
decision trees through a
majority voting mechanism

F

Models are built sequentially
by minimizing the errors from
previous models while
increasing (or boosting)
influence of high-performing
models

Optimized Gradient Boosting
algorithm through parallel
processing, tree-pruning,
handlinlessing values and
regularization to avoid
overfitting/bias

Decision
Trees

A graphical
representation of
possible solutions to
a decision based on
certain conditions

voLClhiivel 41J, cvaiJy

Bagging

/.

Adh

Bagging-based algorithm
where only a subset of
features are selected at
random to build a forest
or collection of decision

trees

\oosting

Gradient Boostin
employs gradien
descent algorithm to
minimize errors in
sequential models

v

o sl

—_—

> Cache awareness and Regularization for
out-of-core computing avoiding overfitting

Tree pruning
using depth-first
approach

Efficient
handling of
missing data

Parallelized

In-built cross-
tree building

validation
capability

December 19, 2019

Performance Comparison using SKLearn's 'Make_Classification’ Dataset
(5 Fold Cross Validation, TIMM randomly generated data sample, 20 features)

AUROC (Measure of Prediction Power) Training Time (in seconds)

0.9662 24

“emmam--

--- -

|17

Gradient Boosting 0.9661

Random Forest

Logistic Regression

Stacking - Stacked Generalization

* Use many different learners using separate sets of attributes.
It does not matter if you use the same learner algorithm or if
they share some/all attributes; the key is that they must be
different enough in order to guarantee diversification

e The meta-model can be a classification tree, a random forest,
a support vector machine... Any classification learner is valid.

December 19, 2019

64

Stacking - Stacke:
/ ! g

‘ sub-system 2

N sub-system 3

oT}(1) = (ell, al2,.. alr)
a{T}(2) = (a21, a22,... a2r)
a{T}(n) = (anl, an2,... anr)
,
x(1) e{2)(1) = (all, al2,... als)
x2) | af2)(2) = (a21, a22,... a2s)
x(n) . o{2}(n) = (anl, an2,... ans)
 e3)(7) = (all, al2,.. alt)
a(3}(2) = (@21, a22,.. a2t)
a{3}(n) = (anl, an2,... ant)

December 19, 2019

sub~system [

4

B

+

eneralization
| Avtributes |

e(7)
«(2)

ee(n)?

__“«D)
«(2)

ée(n)?

(1)

«(2)

ée(n)?

Estimation

(T}(7)

e(TH(2)

e(T}(n)

e(2)(1)

e(2}(2)

e{2}(n)

e(3}7)

e(3}(2)

BH(n)

65

-

Stacking - Stackes

sub-system 7

sz}(’) 1 sub-system 2

sub-system 3

December 19, 2019

a'(1) = (e(TH(1), ¢(2)(1), (3K7))

- a'(2) = (efT}(2), e(2}(2), ¢(3}(2))

Imeta~maodel

4

a'(n) = (e(INn), e(2H(n), e(3K(n)) |

eneralization

«(7)
«(2)

ce(n)?

—_—

1

e'(2)

(1)

e'(n)

66

Stacking - Stacked Generalization

&
» Blending

N
.0‘ New instance

December 19, 2019 Figure 7-12. Aggregating predictions using a blending predictor

67

