Exercise-2 Additional Derivative Topics:

> (Derivatives of Exponential and Logarithmic Functions, The Chain Rule, Implicit Differentiation, Elasticity of Demand)

1. Find the derivative of each function.
a) $y=\ln x^{10}+e^{x}-3 x^{e}$
b) $y=x x^{e}+e e^{x}$
c) $y=2^{x}-3 x^{2}$
d) $f(x)=-\log _{2} x+10 \ln x$
e) $h(t)=\frac{t \ln t}{e^{t}}$
f) $y=\frac{\log _{2} x}{1+x^{2}}$
g) $y=\frac{10^{x}}{1+x^{4}}$
i) $f(x)=4 x^{3} \log _{4} x^{3}$
j) $f(u)=\frac{u^{2} e^{u}}{1+\ln u}$
k) $y=2 \ln \left(x^{2}-3 x+4\right)$
I) $y=e^{x^{2}+3 x+1}$
m) $y=\left(x^{4}+3\right)^{1 / 2}$
n) $f(x)=\left(2^{x}+\log _{2} x\right)^{2}$
o) $f(x)=\ln \left(x^{2}+3\right)^{3 / 2}$
p) $f(x)=\left[\ln \left(x^{2}+3\right)\right]^{3 / 2}$
r) $f(x)=3 x^{3}\left(x^{2}+1\right)^{3}$
s) $y=\left[\log _{3}\left(3 x^{2}-1\right)\right]^{4}$
t) $y=\frac{\left(3 x^{2}-7\right)^{5}}{2 \sqrt{x^{3}}}$
2. Find the equation(s) of the tangent line(s) to the graph of $x^{2}+y^{2}-x y-7=0$ at $x=1$.
3. Find x^{\prime} for $x=x(t)$ defined implicitly by

$$
1+x \ln t=t e^{x}
$$

and evaluate x^{\prime} at $(t, x)=(1,0)$.
4. Use implicit differentiation to find y^{\prime} and evaluate y^{\prime} at the indicated point.
a) $2 x y+y+2=0 ; \quad(-1,2)$
b) $x^{3}-y=\ln y$;
c) $e^{y}=x^{2}+y^{2} ;(1,0)$
d) $x \ln y+2 y=2 x^{3}$;
5. For the demand equation

$$
x=\sqrt[3]{1500-p^{3}}
$$

find the rate of change of p with respect to x by differentiating implicitly (x is the number of items that can be sold at a price of $\$ p$).
6. The price p and the demand x for a product are related by the price-demand equation

$$
x=f(p)=1000(40-p)
$$

Find and interpret each of the following:
a) $E(8)$
b) $E(30)$
c) $E(20)$
7. A manufacturer of sunglasses currently sells one type for $\$ 21$ a pair. The price p and the demand x for these glasses are related by

$$
x=f(p)=9500-250 p
$$

If the current price is increased, will revenue increase or decrease?
8. Given the price-demand equation

$$
p+0.005 x=30
$$

a) Express the demand x as a function of the price p.
b) Find the elasticity of demand, $E(p)$.
c) What is the elasticity of demand when $p=\$ 10$? If this price is increased by 10%, what is the approximate percentage change in demand?
d) What is the elasticity of demand when $p=\$ 25$? If this price is increased by 10%, what is the approximate percentage change in demand?
e) What is the elasticity of demand when $p=\$ 15$? If this price is increased by 10%, what is the approximate percentage change in demand?
9. Given the price-demand equation

$$
p+0.01 x=50 .
$$

a) Express the demand x as a function of the price p.
b) Find the elasticity of demand, $E(p)$.
c) What is the elasticity of demand when $p=\$ 10$? If this price is increased by 5%, what is the approximate percentage change in demand?
d) What is the elasticity of demand when $p=\$ 45$? If this price is increased by 5%, what is the approximate percentage change in demand?
e) What is the elasticity of demand when $p=\$ 25$? If this price is increased by 5%, what is the approximate percentage change in demand?
10. Given the price-demand equation

$$
p+0.02 x=60 .
$$

a) Express the demand x as a function of the price p.
b) Express the revenue R as a function of the price p.
c) Find the elasticity of demand, $E(p)$.
d) For which values of p is demand elastic? Inelastic?
e) For which values of p is revenue increasing? Decreasing?
f) If $p=\$ 10$ and the price is decreased, will revenue increase or decrease?
g) If $p=\$ 40$ and the price is decreased, will revenue increase or decrease?
11. The price-demand equation for hamburgers at a fast-food restaurant is

$$
x+400 p=3000 .
$$

Currently, the price of a hamburger is $\$ 3.00$. If the price is increased by 10%, will revenue increase or decrease?

