Faculty of Engineering
 Mathematical Analysis I
 Fall 2018
 Exercises 1: Functions

1. Find the domain of the each function 1
a) $f(x)=e^{x}+\sqrt{x+2}+\frac{1}{\ln (1-x)}$
b) $f(x)=\frac{1}{x^{2}-4}+\frac{\sqrt[3]{x-2}}{x^{2}+1}+2^{x+\sqrt{x-1}}$
c) $f(x)=\frac{\log _{2}(x+1)}{\sqrt{3-|x-1|}}+\cos x$
d) $f(x)=5^{\sqrt{|x-2|-|6-x|}}+\left\lfloor x^{2}\right\rfloor+\lceil x\rceil^{2}$
2. Give an example of each type of function: Power function, root function, polynomial, rational function, algebraic function, trigonometric function, exponential function, logarithmic function and transcendental function.
3. Determine whether f is even, odd, or neither even nor odd.
(a) $f(x)=x+\sqrt{1+x^{2}}$
(b) $f(x)=\frac{e^{x}+1}{e^{x}-1} x$
(c) $f(x)=\log \left(x+\sqrt{1+x^{2}}\right)$
(d) $f(x)=\log \frac{1+x}{1-x}$
4. If $f(x)=\ln x$ and $g(x)=x^{2}-9$, find the functions $f \circ g, g \circ f, f \circ f, g \circ g$, and their domains.
5. Show that $f(x)=x^{2}-4 x+5$ is decreasing on $(-\infty, 2]$ and increasing on $[2, \infty)$.
6. If

$$
f(x)= \begin{cases}4 x-3, & x \geq 0 \\ x^{2}-2 x-6, & x<0\end{cases}
$$

and

$$
g(x)=x^{2}-1 .
$$

Find $(f+g-f \circ g \circ f)(-1)$.
7. Use transformations to sketch the graph of the function roughly by hand On what interval is f increasing or decreasing?
(a) $f(x)=2-\sqrt{-x}$
(b) $f(x)=(x+1)^{1 / 3}-5$
(c) $f(x)=\left|x^{2}-4\right|+1$
(d) $f(x)=-2(x+1)^{3}-3$
(e) $f(x)=1-3 \ln (x-2)$
(f) $f(x)=3-2^{-x+1}$
(g) $f(x)= \begin{cases}1+x, & x<0, \\ e^{x}, & x \geq 0\end{cases}$
(h) $f(x)=1-\sin 2 x$

[^0](i) $f(x)=\frac{1}{1+x}-1$
8. The table shows the electricity rates charged by Easton Utilities in the summer months. Write a piecewise definition of the monthly charge $S(x)$ (in dollars) for a customer who uses $x \mathrm{kWh}$ in a summer month and graph the function $S(x)$ roughly.

Table: Energy Charges

$\$ 3.00$ for the first 20 kWh or less
$\$ 5.70$ per kWh for the next 180 kWh
$\$ 3.46$ per kWh for the next 800 kWh
$\$ 2.17$ per kWh for all over 1000 kWh
9. Trussville Utilities uses the rates shown in the following table to compute the monthly cost of natural gas for residential customers. Write a piecewise definition for the cost of consuming x CCF of natural gas and graph the function.

Table: Charges per Month

$\$ 0.7 \overline{675}$ per CCF for the first 50 CCF $\$ 0.6400$ per CCF for the next 150 CCF $\$ 0.6130$ per CCF for all over 200 CCF
10. A personal-computer salesperson receives a base salary of $\$ 1000$ per month and a commission of 5% of all sales over $\$ 10000$ during the month. If the monthly sales are $\$ 20000$ or more, then the salesperson is given an additional $\$ 500$ bonus. Let $E(s)$ represent the person's earnings per month as a function of the monthly sales s.
(a) Write a piecewise definition of the function $E(s)$ and evaluate $E(25000)$.
(b) Graph $E(s)$ for $0 \leq s \leq 30000$.
11. Determine whether the statement is true or false. If it is true, explain why. If it is false, give an example that disproves the statement.
(a) If f and g are even, then $f+g$ is even.
(b) If f and g are odd, then $f+g$ is odd.
(c) If f and g are odd, then $f g$ is even.
(d) If g is even, then $f \circ g$ is even.
(e) If g is odd, then $f \circ g$ is odd.
(f) If f is a function, then $f(s+t)=f(s)+f(t)$.
(g) A vertical line intersects the graph of a function at most once.
(h) If $f(s)=f(t)$, then $s=t$.
(i) If f and g are functions, then $f \circ g=g \circ f$.

[^0]: ${ }^{1}\lfloor\cdot\rfloor$ and $\lceil\cdot\rceil$ stand for the greatest integer and the least integer functions, respectively.

