Faculty of Engineering
 Mathematical Analysis I
 Fall 2018

Exercises 2: Limit-Continuity

1. Evaluate the following limits or explain why they do not exist (do not use l'Hospital's Rule).
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{|x-3|}$
(b) $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}$
(c) $\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+3}-\sqrt{x^{2}-x+1}\right)$
(d) $\lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$
(e) $\lim _{x \rightarrow 2} \frac{2^{x}+2^{3-x}-6}{\sqrt{2^{-x}}-2^{1-x}}$
(f) $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt[3]{x-1}-\sqrt[3]{1-x}}$
(g) $\lim _{x \rightarrow 1} \frac{\sqrt{x}+\sqrt{x-1}-1}{\sqrt{x^{2}-1}}$
(h) $\lim _{x \rightarrow 0} x^{2} \cos \frac{3}{x}$
(i) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{4 x^{2}-x}$
(j) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+3 x+5}+x}{x+\sqrt{x^{2}-x+1}}$
(k) $\lim _{x \rightarrow 0} \frac{\sin (16 x)}{x+1-\cos x}$
(l) $\lim _{x \rightarrow \infty} \frac{\sin x}{e^{x}}$
(m) $\lim _{x \rightarrow 2^{+}} \frac{\sqrt{x-2}-\sqrt{2}+\sqrt{x}}{\sqrt{x^{2}-4}}$
(n) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 7 x}$
(o) $\lim _{x \rightarrow 0} \sqrt{x^{3}+x^{2}} \cos \left(\frac{\pi}{x}\right)$
2. Find numbers a and b such that $\lim _{x \rightarrow 0} \frac{\sqrt{a x+b}-2}{x}=1$.
3. If $\lim _{x \rightarrow a}[f(x)+g(x)]=3$ and $\lim _{x \rightarrow a}[f(x)-g(x)]=2$, find $\lim _{x \rightarrow a} f(x) g(x)$.
4. Consider the functions

$$
f(x)= \begin{cases}\frac{\sin 2 x}{2 x}, & x<0 \\ 1, & x=0 \\ \frac{\cos x}{x^{3}+1}, & x>0\end{cases}
$$

and

$$
g(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 1, & x=0\end{cases}
$$

Are the functions f and g continuous at $x=0$? Explain your answer.
5. Find the constants m and n so that the following functions are continuous.
(a) $f(x)= \begin{cases}\frac{x^{2}-4}{x-2}, & x \neq 2, \\ m, & x=2\end{cases}$
(b) $f(x)= \begin{cases}m x-n, & x<1, \\ 5, & x=1, \\ 2 m x+n, & x>1\end{cases}$
(c) $f(x)= \begin{cases}\frac{\sin ^{2} x}{x^{2}-x}, & x \neq 0, \\ m, & x=0\end{cases}$
6. Show that there is a root of the given equation in the specified interval.
(a) $e^{-x}=\ln x,(1,2)$
(b) $\cos x=x,(0,1)$
7. If $f(x)=x^{6}+2 x-7$, show that there is a number c such that $f(c)=25$.
8. Is there a number that is exactly 1 more than its cube?
9. Use the Intermediate Value Theorem to prove that there is a positive c such that $c^{2}=2$.
10. The gravitational forced exerted by Earth on a unit mass at a distance r from the center of the planet is

$$
F(r)= \begin{cases}\frac{G M r}{R^{3}}, & \text { if } \quad r<R \\ \frac{G M}{r^{2}}, & \text { if } \quad r \geq R\end{cases}
$$

where M is the mass of Earth, R is its radius, and G is the gravitational constant. Is F a continuous function of r ?
11. Let

$$
f(x)= \begin{cases}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ 0, & x=1\end{cases}
$$

and

$$
g(x)= \begin{cases}1+x \sin \left(\frac{121}{x}\right), & x \neq 0 \\ 1, & x=0\end{cases}
$$

are given.
(a) Evaluate $\lim _{x \rightarrow 1} f(x)$.
(b) Evaluate $\lim _{x \rightarrow 0} g(x)$.
(c) Evaluate $\lim _{x \rightarrow 0}(f \circ g)(x)$.
12. Determine whether the statement is true or false. If it is true, explain why. If it is false, give an example that disproves the statement.
(a) If $\lim _{x \rightarrow a} f(x)=3$ and $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ does not exist.
(b) If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ does not exist.
(c) If $\lim _{x \rightarrow a} f(x) g(x)$ exists, then the limit must be $f(a) g(a)$.
(d) If $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} g(x)$ does not exist, then $\lim _{x \rightarrow a} f(x) g(x)$ does not exist.
(e) If the line $x=2$ is a vertical asymptote of $y=f(x)$, then f is not defined at 2 .
(f) If $f(2)>0$ and $f(4)<0$, then there exists a number c between 2 and 4 such that $f(c)=0$.
(g) If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$, then $\lim _{x \rightarrow a}[f(x)-g(x)]=0$.
(h) If f is not continuous at 5 , then $f(5)$ is not defined.
(i) A function may has infinitely many vertical asymptote.
(j) If $f(x)>5$ for all x and $\lim _{x \rightarrow 0} f(x)$ exists, then $\lim _{x \rightarrow 0} f(x)>5$.
(k) If $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ are exist, then $\lim _{x \rightarrow a} f(x)$ exists.
(l) A function may has at most two horizontal asymptote.
(m) If the line $y=2$ is a horizontal asymptote of $y=f(x)$, then this line does not cross the graph of $y=f(x)$.

