Faculty of Engineering
Mathematical Analysis I
Fall 2018
Exercises 2: Limit-Continuity

1. Evaluate the following limits or explain why they do not exist (do not use ’Hospital’s Rule).
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2. Find numbers a and b such that lim, ,g ——— = 1.
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3. If limg o [f (2) + g (2)] = 3 and lim, . [f (2) — g (x)] = 2, find lim,_,, f (2) g ().
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Are the functions f and g continuous at x = 07 Explain your answer.

5. Find the constants m and n so that the following functions are continuous.
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6. Show that there is a root of the given equation in the specified interval.
(a) e =Inz, (1,2)
(b) cosz =z, (0,1)
7. If f(x) = 25+ 2o — 7, show that there is a number ¢ such that f (¢) = 25.
8. Is there a number that is exactly 1 more than its cube?
9. Use the Intermediate Value Theorem to prove that there is a positive ¢ such that ¢ = 2.

10. The gravitational forced exerted by Earth on a unit mass at a distance r from the center of the planet
is
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where M is the mass of Earth, R is its radius, and G is the gravitational constant. Is F' a continuous
function of r?
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(a) Evaluate lim, 1 f (z).
(b) Evaluate lim,_,q g (z).
(c) Evaluate limg,_ (f o g) ().

12. Determine whether the statement is true or false. If it is true, explain why. If it is false, give an
example that disproves the statement.

(a) If limy_, f () = 3 and lim,_,, g (z) = 0, then lim,_,, % does not exist.

(b) If lim; ., f (z) = 0 and lim,_,, g (z) = 0, then lim,_,, % does not exist.

(¢) If lim,—, f (2) g (z) exists, then the limit must be f (a) g (a).

(d) If limg ., f (x) exists and lim, 4 g () does not exist, then lim,_,, f (z) g () does not exist.

(e) If the line z = 2 is a vertical asymptote of y = f (x), then f is not defined at 2.

(f) If £(2) >0 and f(4) < 0, then there exists a number ¢ between 2 and 4 such that f (c) = 0.

(g) If lim, . f (z) = 0o and lim,_,, g (x) = oo, then lim, ., [f () — g (z)] = 0.

(h) If f is not continuous at 5, then f (5) is not defined.

(i) A function may has infinitely many vertical asymptote.
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(k) If im,_, - f (x) and lim,_, .+ f (x) are exist, then lim,_,, f () exists.

If f(z) > 5 for all z and lim,_, f (x) exists, then lim,_,¢ f (x) > 5.

(1) A function may has at most two horizontal asymptote.

(m) If the line y = 2 is a horizontal asymptote of y = f (x), then this line does not cross the graph of

y=f(z).



