1. Calculate y^{\prime}.
(a) $y=\sqrt{x}+\frac{1}{\sqrt[3]{x^{4}}}$
(b) $y=\frac{3^{x^{2}+1}}{1+x^{2}}$
(c) $y=\frac{1}{\sin (x-\sin x)}$
(d) $x y^{4}+x^{2} y=x+3 y$
(e) $x^{2} \cos y+\sin 2 y=x y$
(f) $y=\arctan (\arcsin \sqrt{x})$
(g) $y=(\cos x)^{x}$
(h) $y=x^{\sin x}+\ln \left(x^{\sqrt{x}}\right)$
(i) $y=\frac{(x+3)(x+4)(x+5)}{(x+6)(x+7)}$
(j) $y=\sin \left(\cos ^{2}\left(\tan x^{2}\right)\right)$
(k) $y=\log _{4}\left(\cos \frac{1}{x}\right)$
(l) $y=(x-1)(x-2)(x-3) \cdots(x-101)$, at the point $x=3$.
(m) $y=x|x|$, at the point $x=0$.
(n) $f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x=0\end{array}\right.$, at the point $x=0$.
2. Let $f:[2, \infty) \longrightarrow \mathbb{R}$ be a function defined by $f(x)=x^{2}-6 x+3$. Find $\left(f^{-1}\right)^{\prime}(-2)$.
3. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function defined by $f(x)=e^{2 x}+3 x-2$. Find

$$
\lim _{x \rightarrow 0} \frac{f^{2}(x)-f^{2}(0)}{x}
$$

4. Find values of a and b that make

$$
f(x)= \begin{cases}\sqrt{x}, & x \leq 1 \\ a x^{2}+b, & x>1\end{cases}
$$

differentiable at $x=1$.
5. Let

$$
f(x)= \begin{cases}\cos \frac{\pi}{4} x, & x \leq 1 \\ a x+b, & x>1\end{cases}
$$

(a) Determine the values of a and b so that f is continuous everywhere.
(b) Determine the values of a and b so that f is differentiable everywhere.
6. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function defined as

$$
f(x)=\left\{\begin{array}{ll}
e^{x}-1, & x<0 \\
\sin (x)+x^{2}, & x \geq 0
\end{array} .\right.
$$

Say where f is continuous and differentiable.
7. Let $f(x)=\left\{\begin{array}{ll}0, & \text { if } x \leq 0, \\ 5-x, & \text { if } 0<x<4 \\ \frac{1}{5-x}, & \text { if } x \geq 4\end{array}\right.$.
(a) Sketch the graph of f. Say the domain and range of f.
(b) Find f_{-}^{\prime} (4) and $f_{+}^{\prime}(4)$.
(c) Where is f discontinuous? Explain your answer.
(d) Where is f not differentiable? Explain your answer.
8. Let $f(x)=\left\{\begin{array}{ll}(x-1)^{2}, & x \leq 0, \\ \sqrt{x}, & 0<x<4 \\ \frac{x}{2}, & 4<x<6 \\ 3, & x=4\end{array}\right.$.
(a) Sketch the graph of f. Find the domain and range of f.
(b) Find the numbers at which f is not continuous. Explain your answer.
(c) Find the numbers at which f is not differentiable. Explain your answer.
9. Let $f(x)=\left\{\begin{array}{ll}\sqrt{-x}, & \text { if } x<0, \\ 3-x, & \text { if } 0 \leq x<3 . \\ (x-3)^{2}, & \text { if } x>3\end{array}\right.$.
(a) Sketch the graph of f. Find the domain and range of f.
(b) Find the numbers at which f is not continuous. Explain your answer.
(c) Find the numbers at which f is not differentiable. Explain your answer.
10. Let $f(x)=\left\{\begin{array}{ll}1+x^{2}, & \text { if } x \leq 0, \\ 2-x, & \text { if } 0<x \leq 2 \\ (x-2)^{2}, & \text { if } x>2\end{array}\right.$.
(a) Sketch the graph of f. Find the domain and range of f.
(b) Find the numbers at which f is not continuous. Explain your answer.
(c) Find the numbers at which f is not differentiable. Explain your answer.
11. Let $f(x)=\left\{\begin{array}{ll}x+1, & \text { if } x \leq 1, \\ \frac{1}{x}, & \text { if } 0<x<3 \\ \sqrt{x-3}, & \text { if } x>3\end{array}\right.$.
(a) Sketch the graph of f. Find the domain and range of f.
(b) Find the numbers at which f is not continuous. Explain your answer.
(c) Find the numbers at which f is not differentiable. Explain your answer.
12. Let $f(x)=\left\{\begin{array}{ll}\frac{x}{2}, & x \neq 1, \\ 1, & x=1\end{array}\right.$.
(a) Sketch the graph of f. Find the domain and range of f.
(b) Does $\lim _{x \rightarrow 1} f(x)$ exists? Explain your answer.
(c) Is f continuous at $x=1$? Explain your answer.
(d) Is f differentiable at $x=1$? Explain your answer.
13. Let $f(x)=\left\{\begin{array}{ll}|x-1|, & x \leq 1, \\ \sqrt{x-1}, & x>1\end{array}\right.$.
(a) Sketch the graph of f. Find the domain and range of f.
(b) Is f continuous at $x=1$? Explain your answer.
(c) Is f differentiable at $x=1$? Explain your answer.
14. Let $f(x)=\left\{\begin{array}{ll}x^{1 / 3}, & x \leq 1, \\ -|x-1|, & x>1\end{array}\right.$.
(a) Sketch the graph of f. Find the domain and range of f.
(b) Is f continuous at $x=0$ or $x=1$? Explain your answer.
(c) Is f differentiable at $x=0$ or $x=1$? Explain your answer.
15. Find an equation of the tangent line to the curve $x \cos x+\sin y=\frac{1}{2}$ at the point $\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$.
16. Find an equation of the tangent line to the curve $e^{x y}+y^{2} \sin (\pi x)=e$ at the point $(1,1)$.
17. Find an equation of the straight line that passes through the point $(-2,0)$ and is tangent to the curve $y=\sqrt{x}$.

