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(b) Evaluate lim,_, (1 - l)
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(¢) Find an equation of the straight line that passes through the point (-2, 0) and is tangent to the

curve y = +/x.
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(10 point) 6. Determine whether the statement is true or false. No Jjustification is needed.

(a) If f is increasing on an interval, then f’(z) > 0 on the interval.
(b) If f(x) > 0 on an interval, then f is increasing on that interval. @
(¢) If f'(e) =0, then f has an extreme value at c. T
(d) If f has a local extreme value at ¢, and if f*(c) exists, then f' (¢) = 0. @
(e) If f"(¢) =0, then (e, f (¢)) is a point of inflection. T
(f) If f" (x) < 0 for all  in the interval (a,b). then the graph of f is concave down on

that interval. @
(g) A limit of the form 17 is always 1. T
(L) If f(c) is relative maximum, then f’(c) = 0. T
(i) A limit of the form oc — oo is always 0. T
(j) If fis continuous on a closed interval [a,b], then f attains an absolute maximum

value f (¢) and an absolute minimum value f (d) at some numbers ¢ and d in [a.b)]. @
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Attention. The test duration is 90 minutes. The exam is out of 120 points. The use of a calculator, cell
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(15 point) 1. Water runs into a conical tank at the rate of 9 ft? /min. The tank stands point down and has a height
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of 10 ft and a base radius of 5 ft. How fast is the water level rising when the water is 6 ft deep?
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(15 point) 2. A rectangular storage container with an open top is to have a volume of 10 m3. The length of its

base is twice the width. Material for the base costs $10 per square meter. Material for the sides costs
$6 per square meter. Find the cost of materials for the cheapest such container.
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(30 point) 3. Consider f(x) = =

2

(a) Find the domain and intercepts of f:

-D‘Dw\.g = & - %’1\2’5

; with its derivatives: f'(z)
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(20 point) 4. Evaluate the following integrals.
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(b) Find all asymptotes of the graph of f. @
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(d) Find the intervals of concavity and the inflection points of f if there exists.

= y=4i s o Hab,

(¢) Find intervals of increase and decrease, and the local extrema of f if there exists.
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(b) [ cos® zsin® zdx
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(e)

(30 point) 5. This question has three unrelated parts.

(a) Write out the form of the partial fraction decomposition of the function
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