İstanbul Commerce University
 Numerical Analysis
 Summer School
 Sample Final Exam

Name-Surname:
Ph.D. Abdullah YENER
ID Number:
18.08.2017

Attention. The test duration is 110 minutes. The use of a calculator is allowed but cell phone or other equivalent electronic devices or documents are not allowed. Show your work in a reasonable detail. A correct answer without proper or too much reasoning may not get any credit. Good luck.

1. (a) Find the $P_{2}(x)$ Lagrange polynomial interpolating the function $f(x)=\sin \frac{\pi x}{2}$ at $x_{0}=-1, x_{1}=0$ and $x_{2}=1$.
(b) Give an error bound for $\left|f(x)-P_{2}(x)\right|$.
2. (a) According to following datas

$$
\begin{array}{rrccc}
x_{i}: & -1 & 0 & 2 & 3 \\
f\left(x_{i}\right): & -1 & 3 & 11 & 27
\end{array}
$$

find the $P_{3}(x)$ Lagrange interpolation polynomial.
(b) Find $P_{3}(-2)$.
3. (a) Fill the following Divided Difference Table

$$
\begin{array}{ccccc}
x_{i} & f\left(x_{i}\right) & 1^{\text {st }} & 2^{\text {nd }} & 3^{\text {rd }} \\
& & & & \\
x_{0}=-2 & -39 & & & \\
x_{1}=-1 & 1 & & & \\
x_{2}=0 & 1 & & & \\
x_{3}=1 & 3 & & &
\end{array}
$$

(b) Find the $P_{3}(x)$ Newton interpolating polynomial using the part a). What is the value of $P_{3}\left(\frac{1}{2}\right)$?
(c) Find the quadratic Newton polynomial $P_{2}(x)$ interpolating $f(x)$ at x_{1}, x_{2} and x_{3}.
4. Using the method of least squares, fit a straight line to the four points given in the following table

$$
\begin{array}{rcccc}
x_{i}: & 0 & 2 & 3 & 5 \\
f\left(x_{i}\right): & 2 & 0 & -2 & -3
\end{array}
$$

5. Use one step of Newton-Raphson method to solve the systems of nonlinear equations

$$
\begin{aligned}
& f_{1}(x, y)=5 x-15 y^{2}=0 \\
& f_{2}(x, y)=\ln \sqrt{x}-\ln y-\frac{1}{2}=0
\end{aligned}
$$

Take the initial point as $\left(x^{(0)}, y^{(0)}\right)^{T}=(5,1)^{T}$.
6. (a) Use the composite trapezoidal rule with $n=4$ to approximate the integral

$$
\int_{0}^{\pi} e^{x} \cos x d x
$$

(b) Give an upper bound for the error involved in this approximation.
7. (a) Use the composite Simphson's rule with $n=4$ to approximate the integral

$$
\int_{0}^{1} e^{x^{2}} d x
$$

(b) How large should n be to guarantee that the composite Simphson's rule approximation to the integral in part a) is accurate to within 0.0001 ?

