MAT101-Mathematics I / 2019 Fall

Exercise-4: Limit and Continuity

1. Using the gragh of the following function $f(x)$ evaluate the indicated limits.

a) $\lim _{x \rightarrow-3^{+}} f(x)$
b) $\lim _{x \rightarrow-3^{-}} f(x)$
c) $\lim _{x \rightarrow-3} f(x)$
d) $\lim _{x \rightarrow-2^{+}} f(x)$
e) $\lim _{x \rightarrow-2^{-}} f(x)$
f) $\lim _{x \rightarrow-2} f(x)$
g) $\lim _{x \rightarrow 0^{+}} f(x)$
h) $\lim _{x \rightarrow 0^{-}} f(x)$
i) $\lim _{x \rightarrow 0} f(x)$
j) $\lim _{x \rightarrow 2^{+}} f(x)$
k) $\lim _{x \rightarrow 2^{-}} f(x)$
I) $\lim _{x \rightarrow 2} f(x)$
2. Find the limit or explain why the limit does not exist.
a) $\lim _{x \rightarrow-3} \frac{x}{x+5}$
b) $\lim _{x \rightarrow 0} \sqrt{16-7 x}$
c) $\lim _{x \rightarrow 1} \frac{|x-1|}{x-1}$
d) $\lim _{x \rightarrow \sqrt{5}} \frac{x-\sqrt{5}}{|x-\sqrt{5}|}$
e) $\lim _{x \rightarrow-3} \frac{x+3}{x^{2}+3 x}$
f) $\lim _{x \rightarrow-1} \frac{x^{2}-1}{(x+1)^{2}}$
g) $\lim _{x \rightarrow 5} \frac{x-5}{x+2}$
h) $\lim _{x \rightarrow 2} \frac{2 x^{2}-3 x-2}{x^{2}+x-6}$
3. Let $f(x)=\left\{\begin{array}{ll}1-x^{2} & \text { if } x \leq 0, \\ 1+x^{2} & \text { if } x>0 .\end{array}\right.$ Find each indicated quantity if it exists.
a) $\lim _{x \rightarrow 0^{+}} f(x)$
b) $\lim _{x \rightarrow 0^{-}} f(x)$
c) $\lim _{x \rightarrow 0} f(x)$
d) $f(0)$
4. Let $f(x)=\left\{\begin{array}{cl}x+3 & \text { if } x<-2, \\ \sqrt{x+2} & \text { if } x>-2 .\end{array}\right.$ Find each indicated quantity if it exists.
a) $\lim _{x \rightarrow-2^{+}} f(x)$
b) $\lim _{x \rightarrow-2^{-}} f(x)$
c) $\lim _{x \rightarrow-2} f(x)$
d) $f(-2)$
5. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-9}{x+3} & \text { if } x<0, \\ \frac{x^{2}-9}{x-3} & \text { if } x>0 .\end{array}\right.$ Find each indicated quantity if it exists.
a) $\lim _{x \rightarrow-3} f(x)$
b) $\lim _{x \rightarrow 3} f(x)$
c) $\lim _{x \rightarrow 0^{+}} f(x)$
d) $\lim _{x \rightarrow 0^{-}} f(x)$
6. Using the gragh of the following function $f(x)$ evaluate the indicated limits.

a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$
c) $\lim _{x \rightarrow-2^{+}} f(x)$
d) $\lim _{x \rightarrow-2^{-}} f(x)$
e) $\lim _{x \rightarrow-2} f(x)$
f) $\lim _{x \rightarrow 2^{+}} f(x)$
g) $\lim _{x \rightarrow 2^{-}} f(x)$
h) $\lim _{x \rightarrow 2} f(x)$
7. Find each limit. Use $-\infty$ and ∞ when appropriate.
a) $\lim _{x \rightarrow 5^{-}} \frac{x}{x-5}$
b) $\lim _{x \rightarrow 5^{+}} \frac{x}{x-5}$
c) $\lim _{x \rightarrow 5} \frac{x}{x-5}$
d) $\lim _{x \rightarrow-2^{-}} \frac{x^{2}-3 x+2}{x+2}$
e) $\lim _{x \rightarrow-2^{+}} \frac{x^{2}-3 x+2}{x+2}$
f) $\lim _{x \rightarrow-2} \frac{x^{2}-3 x+2}{x+2}$
g) $\lim _{x \rightarrow \infty} \frac{2-3 x^{3}}{7+4 x^{3}}$
h) $\lim _{x \rightarrow-\infty} \frac{2-3 x^{3}}{7+2 x^{3}}$
i) $\lim _{x \rightarrow \infty} \frac{4 x+11}{2 x^{3}-5}$
j) $\lim _{x \rightarrow \infty} \frac{6 x^{5}+2 x}{9 x^{3}+x^{2}}$
k) $\lim _{x \rightarrow-\infty} \frac{x^{2}-x+1}{4 x^{2}}$
8. Find all horizontal and vertical asymptotes for the given functions.
a) $f(x)=\frac{2 x}{x+2}$
b) $f(x)=\frac{x^{2}+1}{x^{2}-1}$
c) $f(x)=\frac{x^{2}-1}{x^{2}+2}$
d) $f(x)=\frac{2 x^{2}-5 x+2}{x^{2}-x-2}$
9. Use the graph to estimate the indicated function values and limits.

a) $\lim _{x \rightarrow-2^{+}} f(x)$
b) $\lim _{x \rightarrow-2^{-}} f(x)$
c) $\lim _{x \rightarrow-2} f(x)$
d) $f(-2)$
e) Is f continuous at $x=-2$? Why?
f) $\lim _{x \rightarrow-3^{+}} f(x) \quad$ g) $\lim _{x \rightarrow-3^{-}} f(x) \quad$ i) $\lim _{x \rightarrow-3} f(x)$
j) $f(-3) \quad$ k) Is f continuous at $x=-3$? Why?
I) $\lim _{x \rightarrow 2^{+}} f(x)$
m) $\lim _{x \rightarrow 2^{-}} f(x)$
n) $\lim _{x \rightarrow 2} f(x)$
o) $f(2)$
p) Is f continuous at $x=2$? Why?
10. Using the definition of continuity, discuss the continuity of each function at the indicated point.
a) $f(x)=x+1$ at $x=1$
b) $g(x)=\frac{x^{2}-1}{x-1} \quad$ at $x=1$
c) $h(x)=\frac{x-2}{|x-2|}$ at $x=2$
d) $k(x)=\left\{\begin{array}{ll}x+2 & \text { if } x \leq 0, \\ 2-x & \text { if } x>0\end{array}\right.$ at $x=0$
11. A company manufacturing snowboards has fixed costs of $\$ 200$ per day and total costs of $\$ 3800$ per day for a daily output of 20 boards.
a) Assuming that the total cost per day $C(x)$ is linearly related to the total output per day x, write an equation for the cost function.
b) The average cost per board for an output of x boards is given by $\bar{C}=\frac{C(x)}{x}$. Find the average cost function.
c) What does the average cost per board tend to as production increases?
12. Natural-gas rates. Table 1 shows the rates for natural gas charged by the Middle Tennessee Natural Gas Utility District during summer months. The base charge is a fixed monthly charge, independent of the amount of gas used per month.

Table 1 Summer (May-September)

Base charge	$\$ 5.00$
First 50 therms	0.63 per therm
Over 50 therms	0.45 per therm

a) Write a piecewise definition of the monthly charge $S(x)$ for a customer who uses x therms in a summer month.
b) Graph $\mathrm{S}(\mathrm{x})$.
c) Is $S(x)$ continuous at $x=50$? Explain.
13. A personal-computer salesperson receives a base salary of $\$ 1000$ per month and a commission of 5% of all sales over $\$ 10000$ during the month. If the monthly sales are $\$ 20000$ or more, then the salesperson is given an additional $\$ 500$ bonus. Let $\mathrm{E}(\mathrm{s})$ represent the person's earnings per month as a function of the monthly sales s.
a) Write a piecewise definition of $E(s)$.
b) Graph $E(s)$ for $0 \leq s \leq 30000$.
c) Find $\lim _{s \rightarrow 10000} E(s)$ and $E(10000)$. Is $E(s)$ continuous at $s=10000$? Explain.
d) Find $\lim _{s \rightarrow 20000} E(s)$ and $E(20000)$. Is $E(s)$ continuous at $s=20000$? Explain.

