Asynchronous Counters

Y-0016/004D and 0001/2D board (given in next page)
In the 3-bit counters given below, negative (falling) edge triggered flip-flops have been used. (This is indicated by the small circle in front of the clock input.)

1. Draw the timing diagrams accordingly.

2. Design a Mod-5 asynchronous counter. A Mod-5 counter counts 0-1-2-3-4-0. First determine the number of flip-flops, and for an up counter. Then, form the resetting mechanism for the output of 6 . You can use the CLEAR input of the flipflops. Construct the circuit, and check your results.

- $\overline{\text { PRESET }}=\overline{\text { CLEAR }}=1$. The asynchronous inputs are inactive and the FF is free to respond to the J, K, and CLK inputs; in other words, the clocked operation can take place.
- $\overline{\text { PRESET }}=0 ; \overline{\text { CLEAR }}=1$. The $\overline{\text { PRESET }}$ is activated and Q is immediately set to 1 no matter what conditions are present at the J, K, and $C L K$ inputs. The CLK input cannot affect the FF while $\overline{\text { PRESET }}=0$.
- $\overline{\text { PRESET }}=1$; $\overline{\text { CLEAR }}=0$. The $\overline{\text { CLEAR }}$ is activated and Q is immediately cleared to 0 independent of the conditions on the J, K, or CLKinputs. The CLK input has no effect while $\overline{\text { CLEAR }}=0$.
- $\overline{\text { PRESET }}=\overline{\text { CLEAR }}=0$. This condition should not be used because it can result in an ambiguous response.

