Logic Lab - Exp \#6

Combinational Circuit Synthesis

Y-0016/001D and Y-0016/005D board (given in next page)

1) The half adder adds two single binary digits A and B. It has two outputs, sum (S) and carry (C). The carry signal represents an overflow into the next digit of a multi-digit addition. Fill in the truth table for a half adder and design the circuit. Then use modular half adder circuit (with EXOR gate) and verify results with your circuit.
2) A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full-adder adds three one-bit numbers, often written as A, B, and $\boldsymbol{C}_{\boldsymbol{i n}} ; \mathbf{A}$ and \mathbf{B} are the operands, and $\boldsymbol{C}_{\boldsymbol{i n}}$ is a bit carried in from the previous lesssignificant stage.
The circuit produces a two-bit output, carry and sum typically represented by the signals $\mathbf{C o u t ~}_{\text {out }}$ an.
First formulate the truth table with $\mathbf{A}, \mathbf{B}, \mathbf{C}_{\mathbf{i n}}$ as inputs, and $\mathbf{C}_{\text {out }}, \mathbf{S}$ as outputs. Then design the circuit with logic gates. Then use modular full adder circuit (with EXOR gate) and verify your results.
3) The half subtractor is a circuit which is used to perform subtraction of two bits. It has two inputs, \mathbf{X} and \mathbf{Y}; and two outputs the difference $\mathbf{D}=\mathbf{X}-\mathbf{Y}$ and borrow out Bout.
The borrow out signal is set when the subtractor needs to borrow from the next digit in a multi-digit subtraction. That is, when $X<Y$. Since X and Y are bits, if and only if $\mathrm{X}=0$ and $\mathrm{Y}=1$.
Fill in the truth table for a half subtractor and design the circuit.

Then implement the circuit using modular full adder circuit.

Logic Lab - Exp \#6

Modular Half Adder Circuit

(b) $\begin{aligned} S & =x \oplus y \\ C & =x y\end{aligned}$

Modular Full Adder Circuit

Subtractor Using Full Adder Circuit

Logic Lab - Exp \#6

