Sequential Circuit Synthesis

Y-0016/004D and 001/2D board (given in next page)

Verfiy JK flip flops with the truth table using Y-0016/004D board for each FF.

Design Example

Suppose we wish to design a circuit that detects a sequence of three or more consecutive 1's in a string of bits coming through an input line. The input is a serial bit stream.

State diagram

Present State		Input	Next State		Output	
A	В	X	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

Using JK flipflop and its excitation table:

Q(t)	Q(t+1)	J	K	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

(a) JK Flip-Flop

State Table and JK Flip-Flop Inputs

Present State		Input	Next State		Flip-Flop Inputs			
A	В	x	A	В	JA	K _A	J _B	K _B
0	0	0	0	0	0	Χ	0	Х
0	0	1	0	1	0	X	1	Χ
0	1	0	0	0	0	Χ	Χ	1
0	1	1	1	0	1	Χ	X	1
1	0	0	0	0	Χ	1	0	X
1	0	1	1	1	X	0	1	X
1	1	0	0	0	X	1	X	1
1	1	1	1	1	X	0	Χ	0

After filling J, K in the table, Karnough map will be used to simplfy and to find inputs of JK flipflops.

- **1.** A stream of **0's** and **1's** coming from a serial transmission channel. A sequential circuit will be designed that detects **011** sequence coming through this input line.
 - a. Draw the state diagram.
 - b. Fill in the state table using JK flipflops
 - c. Simplify the JKs in Karnough and find their input definitions
 - d. Implement the circuit using Y-0016/004D board and other necessary gate boards.

