Combinational Circuit Synthesis

Y-0016/001D, Y-0016/002D and Y-0016/009D boards (given in the last page)

1) Decoder circuit design:

a) Design a 2-input, 4-output 2-bit decoder circuit. The truth table for the 2-bit decoder is given below:

A_1	A ₀	D_3	D_2	D_1	D_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Draw and implement the equivalent circuit using **Y-0016/002D** board.

Verfy results by connecting inputs also to the 7-segment display.

b) Fill in the truth table of 2x1 DEMUX and using same circuit in part (a) verify any one of the rows you select in truth table.

2) Design a 4-input, 2-output 2 bit encoder. The representation and the truth table for the 2-bit encoder is given below:

Draw and implement the equivalent circuit using **Y-0016/001D** board.

3) Using the Demultiplexer in 009D board, fill in the given truth table

Y	S2	S1	SO	Do	D 1	D ₂	D ₃	D 4	D ₅	D 6	D7
	0	0	0								
	0	0	1								
	0	1	0								
	0	1	1								
	1	0	0								
	1	0	1								
	1	1	0								
	1	1	1								

Logic Lab – Exp #5

Logic Lab – Exp #5

