Contents

EXPERIMENT: 5.1	.2
EXAMINATION OF EMITTER GROUND AMPLIFIER	
EXPERIMENT: 5.2	.4
EXAMINATION OF BASE GROUND AMPLIFIER	
EXPERIMENT: 5.3	.6
EXAMINATION OF COLLECTOR GROUND AMPLIFIER	.6

EXPERIMENT: 5.1 EXAMINATION OF EMITTER GROUND AMPLIFIER

EXPERIMENTAL PROCEDURE:

Plug the Y-0016/009 module. Make the circuit connections as in figure 14.5

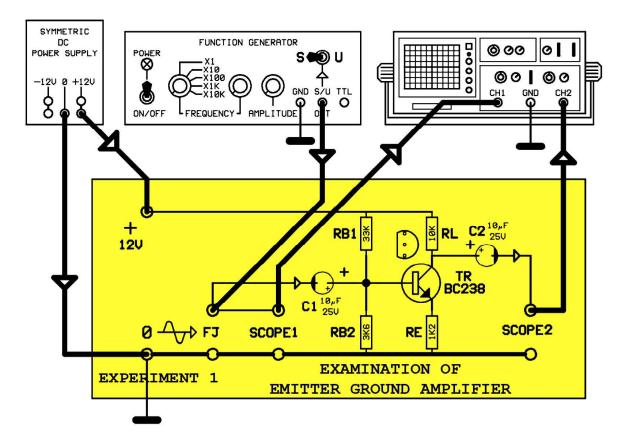


Figure 14.5

1- Adjust the amplitude potentiometer of function generator to zero. (mid-terminal will be on left).

2- Adjust the output waveform to sine, frequency to 1KHz and amplitude to peak to peak Vipp=100mV

3- See the input and output signals at oscilloscope. What is the phase relation between input and output signals?

4- Measure the output signal amplitude (Vopp). Calculate the circuit gain (A).

$$A = \frac{Vo_{PP}}{Vi_{PP}} =$$

5- Write the properties of emitter ground amplifier.

а-	Input impedance
b-	Output impedance
с-	Voltage gain
d-	Current gain
е-	Power gain

EXPERIMENT: 5.2 EXAMINATION OF BASE GROUND AMPLIFIER

EXPERIMENTAL PROCEDURE:

Plug the Y-0016/009 module. Make the circuit connections as in figure 14.7

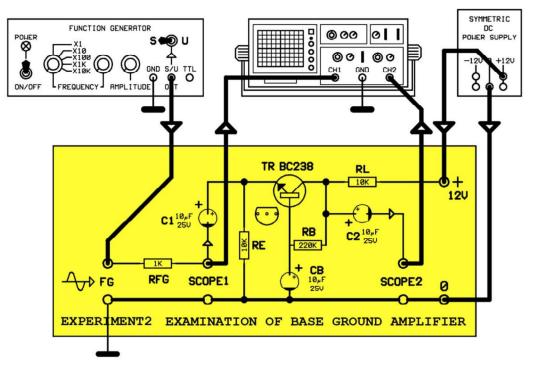
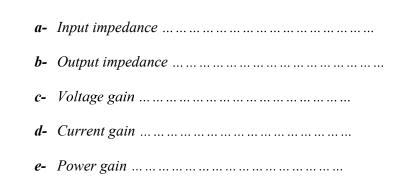


Figure 14.7

1- Adjust the amplitude potentiometer of function generator to zero. (mid-terminal will be on left). RFG resistor is used to prevent the function generator's short-circuiting because input impedance of base ground amplifier is too low.


2- Adjust the output signal to sine wave at point scope1, frequency to 1KHz and amplitude to peak to peak Vipp=10mV. Apply power to the circuit.

3- See the input and output signals displayed by oscilloscope. What is the phase relation between input and output signals?

4- Measure the output signal amplitude (Vopp). Calculate the circuit gain (A).

Peak to peak output signal amplitude is V_{opp} Gain is the ratio of output voltage to input voltage. Gain: $A = \frac{Vo_{PP}}{Vi_{PP}} =$

5-Write the properties of base ground amplifier.

EXPERIMENT: 5.3 EXAMINATION OF COLLECTOR GROUND AMPLIFIER

EXPERIMENTAL PROCEDURE:

Plug Y-0016/009 module. Make the circuit connections as in figure 14.9

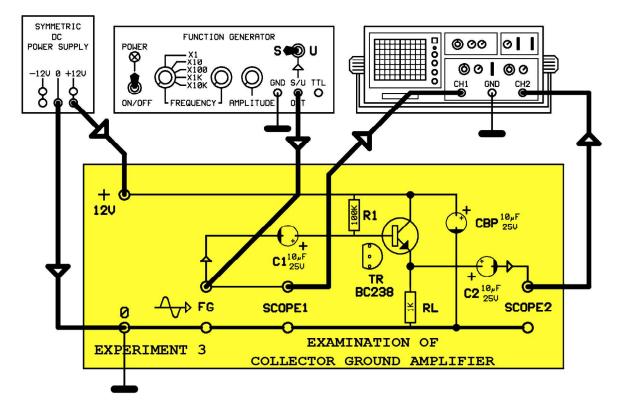


Figure 14.9

1- Adjust the amplitude potentiometer of function generator to zero. (mid-terminal will be on left). Apply power to the circuit.

2- Adjust the output signal to sine wave, frequency to 1KHz and amplitude to peak to peak **Vipp=**1V.

3- See the input and output signals displayed by oscilloscope. What is the phase relation between input and output signals

4- Measure the output signal amplitude (Vopp). Calculate the circuit gain (A).

Output signal amplitude is a little smaller than the input. Peak to peak output signal is $V_{opp.}$

Gain is the ratio of output voltage to input voltage.

Gain:

$$A = \frac{VoPP}{ViPP} =$$

5-Write the properties of collector ground amplifier.

a- Input impedance *b*- Output impedance *c*- Voltage gain *d*- Current gain *e*- Power gain