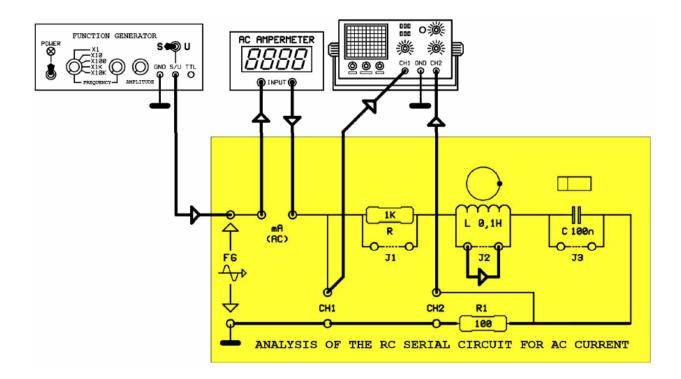
EXPERIMENT #5_2


EXAMINATION OF THE SERIAL RC CIRCUIT FOR AC CURRENT

REQUIRED MATERIALS:

- **1.** Function generator
- 2. Oscilloscope (two channels)
- 3. AC Voltmeter
- **4.** Y-0016/01AC module
- 5. Connection cable

EXPERIMENT:

Adjust the terminal of the function generator to sine, peak to peak value to **Vpp=10** Volt and frequency to **F=1** KHz. Connect the **Y-0016/01AC** module to its place. Short-circuit the **J2**. Make the circuit connections as in the Figure. Apply the power to the circuit..

EXPERIMENT OBSERVATIONS

1.	Why is the J2 points short-circuited?	
2.	What can be said about the circuit looking at the waveform on the oscilloscope?	
3.	Calculate the capacitive reactance of the capacitor.	
L		
4. Short circuit the CH2 points so that the "R1" resistor will not affect the circuit. Calculate the total resistance of the circuit.		
5.	Calculate the circuit impedance	

6.	6. Calculate the circuit current.		
7.	Compare the current value in Ampermeter with the calculated current value.		
8.	Calculate the voltages on resistor and capacitor using the current value.		
9.	Read the voltage values of resistor and capacitor with the AC Voltmeter. Compare these values with the ones we calculated.		

	e circuit voltage using the calculated voltage values (VR and VL). e result with the voltage (V = 3,5V) that you applied to the circuit.
. Draw the ph	nasor diagram of the circuit.
	ROTATION DIRECTION
	ne power factor of the circuit, active power dissipated by the ne phase angle.