1) Convert the units
a) $30 \mathrm{~km} / \mathrm{h}=$ \qquad $\mathrm{m} / \mathrm{s}=$ \qquad $\mathrm{cm} /$ min
b) $\quad 250 \mathrm{~mm} / \mathrm{g}=$ \qquad km/kg
c) 1 shake $=10^{-8} \mathrm{~s} \Rightarrow 1$ day $=$ \qquad shake
d) $\quad 0,02 \mathrm{~g} / \mathrm{cm}^{3}=$ \qquad $\mathrm{kg} / \mathrm{m}^{3}$
2) A, B, C are physical quantities. $[A]=$ velocity; $[B]=$ angular acceleration; $[C]=$ momentum Find the SI units and dimensions of the given derived quantities (S, U, Z).

Quantity	SI Unit and dimension
$\mathrm{S}=\mathrm{AB} / \mathrm{C}$	$[\mathrm{S}]=?$
$\mathrm{U}=\mathrm{A}^{2} / C B^{2}$	$[\mathrm{U}]=?$
$\mathrm{Z}=A B^{3} \mathrm{C}$	$[\mathrm{Z}]=?$

Answer these questions approximately and estimatedly.
3) A) How many apples can be filled in the lab ?
b) How many micrometers does your hair grow per minute?
c) How old are you in seconds?
d) Think yourself as a cylinder. What is your density, approximately.

Q6. In each formula, determine what units of measurement the specified quantity must have by writing out the units for each quantity you already know and solving and/or simplifying for the missing units. Note that every force, no matter what causes it, can be measured in newtons; every energy, no matter what type, can be measured in joules; and so on.

1) $I=m \cdot r^{2}, I$ (moment of inertia) is measured in \qquad
2) $W=F \cdot \Delta x, W$ (work) is measured in \qquad
3) $\Delta E_{\text {them }}=m \cdot c \cdot \Delta T, c$ (specific heat) is measured in \qquad
4) $F_{\text {spr }}=-k x, k$ (spring constant) is measured in \qquad
5) $\quad F_{g r a v}=-G \cdot \frac{m_{1} \cdot m_{2}}{r^{2}}, G$ (universal gravitational constant) is measured in \qquad
6) $\quad F_{\text {elec }}=k_{e} \cdot \frac{Q_{1} \cdot Q_{2}}{r^{2}}, k_{e}$ (Coulomb's constant) is measured in \qquad
(note: this doesn't involve springs; k is just used frequently for constants)
