Instructions: Keep all devices capable of communication turned off and out of sight.Multiple Choice Questions (44 points)

Q1 Suppose that $f(x)=|x+2|$ and the domain of f is $(-\infty,-2]$. Find $f^{-1}(2)$.
(A) -5
(C) -2
(E) None
(B) -4
(D) 1

Q2 Let $A=\{a, b, c, d\}$ and $B=\{1,2\}$ be finite sets. How many functions are there from A to B ?
(A) 16
(C) 81
(E) None
(B) 32
(D) 12
Q3 $\lim _{x \rightarrow 0} \frac{\sin x}{\sqrt{x}}$ is
(A) -1
(C) 1
(E) None
(B) 0
(D) π

Q4 Suppose $f(x)=\frac{1}{x^{2}-25}$. What is the largest value of A such that $f(x)$ is defined on the interval $[-10, A)$?
(A) 5
(C) -2
(E) None
(B) $2 \sqrt{6}$
(D) -5

Q5 If $f(x)=|x+2|$ then find $\lim _{x \rightarrow-2} \frac{f(x)-f(-2)}{x+2}$
(A) 4
(B) 1
(D) 2

Q6 $\lim _{x \rightarrow 0} \frac{\tan x-x}{\sin x}$ is
(A) 2
(C) π
(E) None
(B) $-\pi / 2$
(D) 0
Q7 $\lim _{x \rightarrow \infty} \frac{5+7^{x}}{2+9^{x}}$
(A) ∞
(C) $5 / 2$
(E) None

Q8 The equation of the slant (or oblique) asymptote to the graph of $f(x)=\frac{x^{3}+1}{x^{2}+1}$ is
(A) $y=-x$
(C) $y=-x+1$
(E) None
(B) $y=x+1$
(D) $y=x$

Q9 Let $\frac{1}{3} x+\frac{3}{x}+1 \leq f(x) \leq x^{2}-4 x+6$. Find the $\lim _{x \rightarrow 3} f(x)$
(A) -1
(C) 2
(B) 0
(D) 3
(E) 11

Q10 Find the vertical(VA) and horizontal(HA) asymptotes of the function $f(x)=\frac{x^{2}+5 x+6}{x^{2}-4}$.
(A) $V A: x= \pm 2, \quad H A: y=1$
(C) $V A: x=2, \quad H A: y=1$
(B) $V A: x=-2, \quad H A: y=1$
(D) None

Q11 $\lim _{x \rightarrow e}\left[\tan ^{-1}(\ln x)\right]$
(A) ∞^{∞}
(C) $\pi / 4$
(B) π
(D) $-\infty$
(E) None

True/False questions(16 pts). No justifications are needed.
Q12 A circle can be the graph of a function. T F
Q13 If $f(x)=7-x+e^{x-2}$. Then $f^{-1}(6)=2$. T

F
Q14 If $\lim _{x \rightarrow \infty} f(x)$ exists, then $f(x)$ must have a horizontal asymptote. T \square
Q15 If both $f(x)$ and $g(x)$ are odd functions, then their product $f(x) g(x)$ is an even function

$$
\mathrm{T}
$$

Find the following limits. If a limit does not exist, state does not exist and provide a brief explanation. Show all work. No work=No credit(40 pts)

Q1(20pts) $\lim _{x \rightarrow 0} \frac{\frac{1}{x+7}-\frac{1}{7}}{x}$.
Solution.

