Your Name:

Instructions: Show all of your work, and clearly indicate your answers. Use the backs of pages for the classical questions. You will need pencils/pens and erasers, nothing more. Keep all devices capable of communication turned off and out of sight.

Section I: TF questions (20 points)

Q1) T F A circle can be the graph of a function.
Q2) T F Every function has an inverse.
Q3) T F The direct substitution property can always be used to compute limits.

Q4) T F If $\lim _{x \rightarrow a} f(x)$ exists then $\lim _{x \rightarrow a} f(x)=f(a)$
Q5) T F Every function is continuous on its domain.
Q7) T $\mathrm{F} 2^{\pi}=e^{2 \ln \pi}$
Q8) T F $\ln x=\pi$ has a unique solution.
Q9) T F If $f(x)=x^{2}$ and $g(x)=x+1$ then $(f \circ g)(x)=x^{2}+1$.
Q10) T F Every function is either an odd function or an even function.

Section II: Fill in the blank questions (20 points)

Q1) $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=$
Q2) $\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}=$ \qquad

Q3) Let f be \qquad on the closed interval $[a, b]$ and let $f(a) \neq f(b)$. For any number \qquad between $f(a)$ and $f(b)$ there exists a number $c \in(a, b)$ such that \qquad -

Section III: Classical questions, (Show all your work)(60pts)

Q1 State the Intermediate Value Theorem.
Q2 State the Horizontal Line Test Theorem.
Q3 State the definition of continuity at a point.
Q4 State the Squeeze Theorem for limits.
Q5 Find the domain of the function $f(x)=\frac{x^{2}-1}{x^{3} \sqrt{\ln x+1}}$.
Q6 Find the limit $\lim _{x \rightarrow \frac{1}{2}} \sqrt{\frac{-4 x^{2}+2 x}{4 x^{2}-8 x+3}}$
Q7 Show that $\frac{x^{4}-2 x-2}{x}=|x|$ has at least two roots in the interval $[-2,2]$.
Q8 Find the limit $\lim _{x \rightarrow 0} \frac{(1+x)^{3}-1}{x}$
Q9 Find the limit $\lim _{x \rightarrow \infty}\left(x^{2}-\sqrt{x^{4}-x^{2}-1}\right)$
Q10 Find the limit $\lim _{x \rightarrow 3} \sqrt{x^{2}-9}$
Q11 Show that $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$
Q12 Find the limit $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (4 x)}$.
Q13 Given the function: $f(x)=\left\{\begin{array}{lll}c-x & \text { if } & x \leq \pi \\ c \sin x & \text { if } & x>\pi\end{array}\right.$
Find the values of the constant c so that the function $f(x)$ is continuous.
Q14 Use polynomial long division to find the slant asymptote of $f(x)=\frac{(1-x)^{3}}{x^{2}}$ Q15 Find the horizontal asymptotes (if any) of $f(x)=\frac{x^{2}-3 x+2}{x^{2}-2 x}$ Q16 Show that the equation $x^{5}-x+1=0$ has at least one real solution.
Q17 A rectangular box with a square base has volume 125. Express its total surface area A as a function of the edge length x of its base.
Q18 Write $\sin \left(2^{\tan (x+1)}\right)$ as a composition of functions.

Word of the Week: "Each problem that I solved became a rule, which served afterwards to solve other problems " (Rene Descartes)

