Instructions: Show all of your work, and clearly indicate your answers.
Q1 Find the slope of the tangent line to the curve

$$
f(x)=\sqrt{x}
$$

at the point $x_{0}=1$ and then determine the equation of the tangent line.

Solution:

Compute: $m_{\text {tan }}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$

$$
\begin{aligned}
m_{t a n} & =\lim _{h \rightarrow 0} \frac{\sqrt{x_{0}+h}-\sqrt{x_{0}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x_{0}+h}-\sqrt{x_{0}}}{h} \frac{\sqrt{x_{0}+h}+\sqrt{x_{0}}}{\sqrt{x_{0}+h}+\sqrt{x_{0}}} \\
& =\lim _{h \rightarrow 0} \frac{x_{0}+h-x_{0}}{h\left(\sqrt{x_{0}+h}+\sqrt{x_{0}}\right)} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x_{0}+h}+\sqrt{x_{0}}} \\
& =\frac{1}{2 \sqrt{x_{0}}} \\
& =\frac{1}{2 \sqrt{1}} \\
& =\frac{1}{2} .
\end{aligned}
$$

Now using the point-slope form at the point $(1,1)$ we have

$$
\begin{aligned}
y-1 & =\frac{1}{2}(x-1) \\
y & =\frac{1}{2} x-\frac{1}{2}+1 \\
y=\frac{1}{2} x+\frac{1}{2} . &
\end{aligned}
$$

Q2 Find the equations of the tangent and normal lines to the curve $y=\sqrt{x+1}$ at the point $(3,2)$ and sketch the curve and the lines on the same graph.

Solution:

Compute $m_{t a n}=\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}$.

$$
\begin{aligned}
m_{\text {tan }} & =\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{(\sqrt{x+1}-2)(\sqrt{x+1}+2)}{(x-3)(\sqrt{x+1}+2)} \\
& =\lim _{x \rightarrow 3} \frac{(\sqrt{x+1})^{2}-2^{2}}{(x-3)(\sqrt{x+1}+2)} \\
& =\lim _{x \rightarrow 3} \frac{x+1-4}{(x-3)(\sqrt{x+1}+2)} \\
& =\lim _{x \rightarrow 3} \frac{x-3}{(x-3)(\sqrt{x+1}+2)} \\
& =\lim _{x \rightarrow 3} \frac{1}{\sqrt{x+1}+2}=\frac{1}{\sqrt{3+1}+2}=\frac{1}{2+2}=\frac{1}{4} .
\end{aligned}
$$

So the required tangent line has slope $\frac{1}{4}$ and passes through the point $(3,2)$, so has the equation:

$$
y-2=\frac{1}{4}(x-3), \quad 4 y-8=x-3 \Longrightarrow x-4 y+5=0 .
$$

Then the required normal line has slope $-\frac{1}{\left(\frac{1}{4}\right)}=-4$ and passes through the point $(3,2)$, so has the equation:

$$
y-2=-4(x-3)=-4 x+12 \Longrightarrow y+4 x-14=0 .
$$

Q3 Let $f(x)=\frac{3}{1+2 x}$.

1. Find the slope of the secant line to the curve $y=f(x)$ passing through points where $x=1$ and $x=4$.
2. Give the equation of this secant line.

Solution:

1. $m_{\mathrm{sec}}=\frac{f(4)-f(1)}{4-1}=\frac{\frac{3}{9}-1}{3}=-\frac{2}{9}$
2. $y-f(1)=m_{\text {sec }}(x-1)$
$y-1=-\frac{2}{9}(x-1) \Longrightarrow y=-\frac{2}{9} x+\frac{11}{9}$

Q4 Let $f(x)=-2 x^{2}+4 x+3$.

1. Using definition, find the slope of the tangent line to the curve $y=f(x)$ at $x=2$.
2. Give the equation of the tangent line.
3. Sketch the graph of this tangent line on the graph of $y=f(x)$ at $x=2$.
Solution:
1) $f(2)=-2(2)^{2}+4(2)+3=3$

$$
\begin{aligned}
\frac{f(2+h)-f(2)}{h} & =\frac{-2(2+h)^{2}+4(2+h)+3-3}{h} \\
& =\frac{-8-8 h+2 h^{2}+8+4 h}{h} \\
& =\frac{-4 h+h^{2}}{h}=\frac{h(-4+h)}{h}=-4+h
\end{aligned}
$$

$$
m_{\mathrm{tan}}=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0}(-4+h)=-4
$$

2) $y-f(2)=m_{\tan }(x-2), \quad y-3=(-4)(x-2) \Longrightarrow y=-4 x+11$ 3.)

Q5 The height of a ball thrown vertically upwards with velocity 100 m / s is given by $f(t)=100 t-t^{2}$. Find the average velocity in the time intervals

1. $[1,2]$
2. $[1,1.01]$
3. Estimate the instantaneous velocity after one second.

Solution:

The average velocity of a particle whose height (or distance) is given by $f(t)$, over a time interval $[a, b]$ is

$$
\frac{f(b)-f(a)}{b-a}
$$

We have $f(t)=100 t-t^{2}$ and so
(1) average velocity $=\frac{f(2)-f(1)}{2-1}=\frac{100(2)-2^{2}-\left(100(1)-1^{2}\right)}{1}=\frac{196-99}{1}=97$.
(2) $\frac{f(1.01)-f(1)}{1.01-1}=\frac{100(1.01)-(1.01)^{2}-\left(100(1)-1^{2}\right)}{.01}=97.99$.
(3)

$$
\begin{aligned}
\text { instantaneous velocity } & =\lim _{t \rightarrow 1} \frac{f(t)-f(1)}{t-1} \\
& =\lim _{t \rightarrow 1} \frac{-t^{2}+100 t-99}{t-1} \\
& =\lim _{t \rightarrow 1}-(t-99)=98
\end{aligned}
$$

Solution:

Q6 Let $f(x)=x^{2}+2 x+3$, defined for any real number x.
Compute and interpret geometrically, using a graph of the function $y=$ $f(x)$, the following quantities:

1. $\frac{f(x)-f(2)}{x-2}$
2. $\lim _{x \rightarrow 2}\left(\frac{f(x)-f(2)}{x-2}\right)$
3. $\frac{f(3+h)-f(3)}{h}$
4. $\lim _{h \rightarrow 0}\left(\frac{f(3+h)-f(3)}{h}\right)$

Solution:

1. $\frac{f(x)-f(2)}{x-2}$

This is the slope of the secant line joining the points of the graph $(2, f(2))$ and $(x, f(x))$.
We have $f(2)=2^{2}+2(2)+3=4+4+3=11$, so we get:

$$
\frac{f(x)-f(2)}{x-2}=\frac{x^{2}+2 x+3-11}{x-2}=\frac{(x-2)(x+4)}{x-2}=x+4
$$

2. $\lim _{x \rightarrow 2}\left(\frac{f(x)-f(2)}{x-2}\right)$

This is the limit as x goes to 2 of the slope of the secant line joining the points of the graph $(2, f(2))$ and so is the slope of the tangent line at $(2, f(2)$.

$$
\lim _{x \rightarrow 2}\left(\frac{f(x)-f(2)}{x-2}\right)=\lim _{x \rightarrow 2}(x+4)=2+4=6
$$

So the tangent line to the graph at $(2,11)$ has slope 6 .
3. $\frac{f(3+h)-f(3)}{h}$

This is the slope of the secant line joining the points of the graph $(3, f(3))$ and $(3+h, f(3+h))$.
We have $f(3)=3^{2}+2(3)+3=9+6+3=18$.
Also we have $f(3+h)=(3+h)^{2}+2(3+h)+3=$ $9+6 h+h^{2}+6+2 h+3=h^{2}+8 h+18$.
So the slope of the secant line is:

$$
\frac{f(3+h)-f(3)}{h}=\frac{h^{2}+8 h+18-18}{h}=\frac{h^{2}+8 h}{h}=h+8
$$

4. $\lim _{h \rightarrow 0}\left(\frac{f(3+h)-f(3)}{h}\right)$

This is the limit as $3+h$ goes to 3 of the slope of the secant line joining the points of the graph $(3, f(3))$ and $(3+h, f(3+h))$, so is the slope of the tangent line at $(3, f(3)$.
We have:

$$
\lim _{h \rightarrow 0}\left(\frac{f(3+h)-f(3)}{h}\right)=\lim _{h \rightarrow 0}(h+8)=0+8=8
$$

So the tangent line to the graph at $(3,11)$ has slope 8 .

Q7 The height h of a ball after it is thrown vertically upward is given in meters by the function

$$
h=\frac{5}{6}\left(100 t-t^{2}\right) .
$$

Find its average vertical velocity over the following time intervals:

1. $[2,3]$
2. $[2,2.1]$
3. $[2,2.01]$
4. $[1.9,2.1]$
5. Also determine its instantaneous vertical velocity at $t=2$.

Solution:

1. $[2,3]$

The average vertical velocity over the time interval $[2,3]$ is:
$\frac{h(3)-h(2)}{3-2}=\frac{h(3)-h(2)}{1}=h(3)-h(2)=\frac{5}{6}(300-9)-\frac{5}{6}(200-4)$

$$
=\frac{5}{6}(291-196)=\frac{475}{6} \text {. }
$$

2. $[2,2.1]$

The average vertical velocity over the time interval $[2,2.1]$ is:

$$
\frac{h(2.1)-h(2)}{2.1-2}=\frac{h(2.1)-h(2)}{0.1}=10(h(2.1)-h(2))=\frac{959}{12} .
$$

3. $[2,2.01]$

The average vertical velocity over the time interval $[2,2.01]$ is:

$$
\frac{h(2.01)-h(2)}{2.01-2}=\frac{h(2.01)-h(2)}{0.01}=100(h(2.01)-h(2))=\frac{959.9}{12}
$$

4. $[1.9,2.1]$

The average vertical velocity over the time interval $[1.9,2.1]$ is:

$$
\frac{h(2.1)-h(1.9)}{2.1-1.9}=\frac{h(2.1)-h(1.9)}{0.2}=80 .
$$

5. The instantaneous vertical velocity at $t=2$ is:

$$
\begin{aligned}
\lim _{t \rightarrow 2} \frac{h(t)-h(2)}{t-2} & =\lim _{t \rightarrow 2} \frac{\frac{5}{6}\left(100 t-t^{2}\right)-\frac{5}{6}(196)}{t-2} \\
& =\lim _{t \rightarrow 2} \frac{\frac{5}{6}\left(-t^{2}+100 t-196\right)}{t-2} \\
& =\lim _{t \rightarrow 2} \frac{\frac{5}{6}(t-2)(-t+98)}{t-2} \\
& =\lim _{t \rightarrow 2} \frac{5}{6}(98-t)=\frac{5}{6}(98-2)=80 .
\end{aligned}
$$

Q8 Using the definition of the derivative find the derivative of

$$
f(x)=\sin x
$$

Solution:

We need to use the relation

$$
\sin x-\sin y=2 \cos \left(\frac{x+y}{2}\right) \cdot \sin \left(\frac{x-y}{2}\right)
$$

Now using the definition of the derivative we have:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 \cos \left(\frac{2 x+h}{2}\right) \cdot \sin \left(\frac{h}{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \cos \left(\frac{2 x+h}{2}\right) \cdot \lim _{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}} \\
& =\cos x .
\end{aligned}
$$

Q9 Find the equation of the tangent line to $y=x^{3}-2 x^{2}+2$ at $x=1$.

Solution:

We first begin by evaluating the slope of the tangent to the given curve at the given point. This is found by taking the derivative:

$$
y^{\prime}=3 x^{2}-4 x
$$

and substituting $x=1$ which yields $y^{\prime}(1)=-1$. Now the equation of the tangent is given by the point-slope formula:

$$
y-1=(-1)(x-1) \quad \text { or } \quad y=-x+2
$$

Q10 Suppose that $f(2)=3, f^{\prime}(2)=-1, g(2)=5$ and $g^{\prime}(2)=-2$. Find the derivative of the product $f(x) g(x)$ at $x=2$.

Solution:

According to the product rule, we have:

$$
(f g)^{\prime}(2)=f^{\prime}(2) g(2)+f(2) g^{\prime}(2)=(-1) \cdot 5+3 \cdot(-2)=-11
$$

Q11 Differentiate the function $f(x)=\sqrt{x}-\frac{1}{\sqrt{x}}$

Solution:

$$
f(x)=x^{\frac{1}{2}}-x^{\frac{-1}{2}} \Longrightarrow f^{\prime}(x)=\frac{1}{2} x^{\frac{-1}{2}}+\frac{1}{2} x^{\frac{-3}{2}}=\frac{1}{2 \sqrt{x}}+\frac{1}{2 x \sqrt{x}}
$$

Q12 Differentiate the function $y=f(x)=\frac{\left(x^{2}+4 x+3\right)}{\sqrt{x}}$

Solution:

$y=f(x)=x^{\frac{3}{2}}+4 x^{\frac{1}{2}}+3 x^{\frac{-1}{2}}$

$$
y^{\prime}=\frac{3}{2} x^{\frac{1}{2}}+4\left(\frac{1}{2}\right) x^{\frac{-1}{2}}+3\left(\frac{-1}{2}\right) x^{\frac{-3}{2}}=\frac{3}{2} \sqrt{x}+\frac{2}{\sqrt{x}}-\frac{3}{2 x \sqrt{x}}
$$

Q13 Find the nth derivative of the function $f(x)=\frac{1}{x}$ by calculating the first few derivatives and observing the pattern that occurs

Solution:

$f(x)=x^{-1} \rightarrow f^{\prime}(x)=(-1) x^{-2} \rightarrow f^{\prime \prime}(x)=(-1)(-2) x^{-3} \rightarrow$
$f^{\prime \prime \prime}(x)=(-1)(-2)(-3) x^{-4} \rightarrow \ldots . \rightarrow$
$f^{k}(x)=(-1)(-2)(-3) \ldots . .(-k) x^{-(k+1)}=(-1)^{k} k!x^{-(k+1)}=\frac{(-1)^{k} k!}{x^{k+1}}$.
Q14 The equation of the motion of a particle is $f(t)=t^{3}-3 t$, where f is in meters and t is in seconds. Find

1. Find the velocity and acceleration as functions of t.
2. The acceleration after 2 s .
3. The acceleration when the velocity is 0 .

Solution:

1. $v(t)=f^{\prime}(t)=3 t^{2}-3, a(t)=v^{\prime}(t)=6 t$
2. $a(2)=12 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
3. $v(t)=3 t^{2}-3=0 \rightarrow 3 t^{2}=3 \rightarrow t^{2}=1 \rightarrow t=-1,1$ (disregard -1)
$a(1)=6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Q15 Find $\frac{d y}{d x}$ where
4. $y=\left(-3 x^{2}+\sqrt{x}-\frac{1}{x}\right)^{2003}$
5. $y=\sqrt{\frac{x+1}{x-1}}$
6. $y=\tan (4 x-1)$
7. $y=\ln \left(2^{x}+e^{-x}\right)$

Solution:

1. $u=-3 x^{2}+\sqrt{x}-\frac{1}{x}, y=u^{2003}$

$$
\begin{aligned}
& \frac{d y}{d u}=2003 u^{2002}, \quad \frac{d u}{d x}=-6 x+\frac{1}{2} x^{-1 / 2}+x^{-2} \\
& \frac{d y}{d x}=2003\left(-3 x^{2}+\sqrt{x}-\frac{1}{x}\right)^{2002}\left(-6 x+\frac{1}{2} x^{-1 / 2}+x^{-2}\right)
\end{aligned}
$$

2. $u=\frac{x+1}{x-1}, y=\sqrt{u}$

$$
\begin{aligned}
\frac{d y}{d u} & =\frac{1}{2} u^{-1 / 2}, \quad \frac{d u}{d x}=\frac{(1)(x-1)-(x+1)(1)}{(x-1)^{2}}=-\frac{2}{(x-1)^{2}} \\
\frac{d y}{d x} & =\frac{1}{2}\left(\frac{x+1}{x-1}\right)\left(-\frac{2}{(x-1)^{2}}\right)=-\frac{x+1}{(x-1)^{3}}
\end{aligned}
$$

3. $u=4 x-1, y=\tan (u)$

$$
\frac{d u}{d x}=4, \frac{d y}{d u}=\sec ^{2}(u), \frac{d y}{d x}=3 \sec ^{2}(4 x-1)
$$

4. $u=2^{x}+e^{-x}, y=\ln u$

$$
\begin{aligned}
\frac{d u}{d x} & =2^{x} \ln 2-e^{-x}, \quad \frac{d y}{d u}=\frac{1}{u} \\
\frac{d y}{d x} & =\frac{1}{2^{x}+e^{-x}}\left(2^{x} \ln 2-e^{-x}\right) \\
& =\frac{2^{x} \ln 2-e^{-x}}{2^{x}+e^{-x}}
\end{aligned}
$$

Q16 Find $\frac{d y}{d x}$ where $y=\ln \left(\cos \left(e^{x^{2}-\sec x}\right)\right)$.

Solution:

$w=x^{2}-\sec x, v=e^{w}, u=\cos (v), y=\ln (u)$

$$
\begin{gathered}
\frac{d w}{d x}=2 x-\sec x \tan x, \quad \frac{d v}{d w}=e^{w}, \quad \frac{d u}{d v}=-\sin v, \quad \frac{d y}{d u}=\frac{1}{u} \\
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d v} \frac{d v}{d w} \frac{d w}{d x} \\
\frac{d y}{d x}=\frac{1}{2 x-\sec x \tan x}\left(-\sin e^{x^{2}-\sec x}\right) e^{x^{2}-\sec x}(2 x-\sec x \tan x) \\
=\frac{-e^{x^{2}-\sec x} \sin e^{x^{2}-\sec x}(2 x-\sec x \tan x)}{2 x-\sec x \tan x}
\end{gathered}
$$

Q17 Find $\frac{d y}{d x}$ where $y=\cos (\ln (\sec x+1))$.

Solution:

$$
v=\sec x+1, u=\ln v, \quad y=\cos u
$$

$$
\begin{gathered}
\frac{d v}{d x}=\sec x \tan x, \quad \frac{d u}{d v}=\frac{1}{v}, \quad \frac{d y}{d u}=-\sin u \\
\frac{d y}{d x}=-\sin (\ln (\sec x+1))\left(\frac{1}{\sec x+1}\right)(\sec x \tan x) \\
=-\left(\frac{\sec x \tan x}{\sec x+1}\right) \sin (\ln (\sec x+1))
\end{gathered}
$$

Q18 Differentiate the function: $f(x)=\tan \left(e^{1 / x^{2}}\right)$.

Solution:

We apply the chain rule twice to get:

$$
\begin{aligned}
\left(\tan \left(e^{1 / x^{2}}\right)\right)^{\prime} & =\frac{1}{\cos ^{2}\left(e^{1 / x^{2}}\right)}\left(e^{1 / x^{2}}\right)^{\prime} \\
& =\frac{1}{\cos ^{2}\left(e^{1 / x^{2}}\right)} e^{1 / x^{2}}\left(\frac{1}{x^{2}}\right)^{\prime} . \\
& =-\frac{1}{\cos ^{2}\left(e^{1 / x^{2}}\right)} e^{1 / x^{2}} \frac{2}{x^{3}}
\end{aligned}
$$

Q19 Two functions f and g are such that $f^{\prime}(5)=2, g(3)=5$ and $g^{\prime}(3)=7$. If h is defined by $h(x)=f(g(x))$, then compute $h^{\prime}(3)$.

Solution:

We will apply the chain rule according to which:

$$
h^{\prime}(x)=(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
$$

If we substitute $x=3$, we get:

$$
h^{\prime}(3)=f^{\prime}(g(3)) g^{\prime}(3)=f^{\prime}(5) g^{\prime}(3)=2 \cdot 7=14
$$

Q20 Compute the derivative of the function:

$$
f(x)=\frac{x^{2} e^{x}+1}{x e^{x}+2}
$$

Solution:

We are going to be using the quotient rule and the product rule in order to differentiate this function:
$\left(\frac{x^{2} e^{x}+1}{x e^{x}+2}\right)^{\prime}=\frac{\left(x^{2} e^{x}+1\right)^{\prime}\left(x e^{x}+2\right)-\left(x^{2} e^{x}+1\right)\left(x e^{x}+2\right)^{\prime}}{\left(x e^{x}+2\right)^{2}}=$
$=\frac{\left(\left(x^{2}\right)^{\prime} e^{x}+x^{2}\left(e^{x}\right)^{\prime}+0\right)\left(x e^{x}+2\right)-\left(x^{2} e^{x}+1\right)\left((x)^{\prime} e^{x}+x\left(e^{x}\right)^{\prime}+0\right)}{\left(x e^{x}+2\right)^{2}}=$
$=\frac{\left(2 x e^{x}+x^{2} e^{x}\right)\left(x e^{x}+2\right)-\left(x^{2} e^{x}+1\right)\left(e^{x}+x e^{x}\right)}{\left(x e^{x}+2\right)^{2}}$

Q21 A curve is given by $y^{3}+4 x y-x^{3}+x^{2} y=5$. Find the equation of the tangent to the curve at the point $(1,1)$.

Solution:

Q22 Find the equation of the tangent to the the curve $y x^{2}+y^{3} x+y=7$ at the point $(2,1)$.

Solution:

We first differentiate both sides considering y a function of x : $\left(y x^{2}+y^{3} x+y\right)^{\prime}=(7)^{\prime} \Longrightarrow y^{\prime} x^{2}+2 x y+3 y^{2} y^{\prime} x+y^{3}+y^{\prime}=0$ and we, then, solve for y^{\prime} :

$$
y^{\prime}=\frac{-y^{3}-2 x y}{x^{2}+3 y^{2} x+1}
$$

We, now, substitute $x=2$ and $y=1$:

$$
y^{\prime}=\frac{-5}{11}
$$

We finally use the point-slope formula:

$$
y-1=-\frac{5}{11}(x-2)
$$

Q23 Let functions $f(x)$ and $g(x)$ obey the following properties:

$$
f(3)=4, \quad f^{\prime}(3)=-2, \quad g(3)=-5, \quad g^{\prime}(3)=-1 .
$$

1. Find the equation of the tangent line to the curve $y=f(x) g(x)$ at $x=3$.
2. Let $p(x)=f^{3}(x)+g^{3}(x)$. Find $p^{\prime}(3)$.

Solution:

Q24 Find $\frac{d y}{d x}$ by implicit differentiation if $x^{2}-2 x y+y^{3}=5 x$

Solution:

$$
\begin{gathered}
\left(x^{2}-2 x y+y^{3}-5 x\right)^{\prime}=\left(x^{2}\right)^{\prime}-(2 x y)^{\prime}+\left(y^{3}\right)^{\prime}-(5 x)^{\prime}=0 \\
2 x-\left((2 x)^{\prime} y+2 x y^{\prime}\right)+3 y^{2} y^{\prime}-5=0 \\
2 x-\left(2 y+2 x y^{\prime}\right)+3 y^{2} y^{\prime}-5=2 x-2 y-2 x y^{\prime}+3 y^{2} y^{\prime}-5=0 \\
\left(3 y^{2}-2 x\right) y^{\prime}=2 y-2 x+5 \\
y^{\prime}=\frac{2 y-2 x+5}{3 y^{2}-2 x}
\end{gathered}
$$

Q25 Let $y=y(x)$ be implicitly defined by $x=y+\sin (y)$.
Find $y(0), y^{\prime}(0)$ and $y^{\prime \prime}(0)$.

Solution:

Q26 Verify that the function $f(x)=x^{3}+x-1$ satisfies the hypothesis of the Mean Value Theorem on the interval [0, 2]. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

Solution:

