1

Your Name:

Instructions: You will need pencils/pens and erasers, nothing more. Keep all devices capable of communication turned off and out of sight.

Fill in the blank questions (100 points)

Q1) The between the points $A(x_1, y_1)$ and

 $B(x_2, y_2)$ in the plane is

$$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Q2) Two (nonvertical) lines are ______ if and only if they have the same _____.

Q3) A function f is a	that assigns	s to
each element x in a set A	f(x), in a set	; B.

Q4) [Poincaré Conjecture(original form)(1904)] Every simply connected, closed 3-manifold is______ to the 3-sphere.

Q5) is a measure of how quickly a tangent

line turns on a curve.

Q6) The ______ of a vector $\mathbf{x} = (x_1, x_2, \cdots, x_n),$ written as $|\mathbf{x}|$, is the square root of the _____ of the vector with itself,

$$|\mathbf{x}| = \langle \mathbf{x}, \mathbf{x} \rangle^{\frac{1}{2}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Q7) A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is at $p \in \mathbb{R}^n$ if for each $\epsilon > 0$, there exists $\delta > 0$ such that

$$f(B_{\delta}(p) \subset B_{\epsilon}(f(p)))$$

Q8) Let $U \subset \mathbb{R}^n$ be open. $f: U \to \mathbb{R}^m$ is _____ if and only if whenever $V \subset \mathbb{R}^m$ is open, $f^{-1}(V)$ is also open.

Q9) A function $f: X \to Y$ is a ______ if it is a *bijection*, and both f and its inverse f^{-1} are _____

functions.

Q10) Two topological spaces are *equivalent* (as topological spaces) if there is a _____ from one topological space onto the other. Q11) Let α : $[a,b] \rightarrow \mathbb{R}^3$ be a *regular* curve. Then the of α is given by

$$L = \int_{a}^{b} \left| \frac{d\alpha}{dt} \right| dt.$$

Q12) If f is continuous on [a, b] and $F(x) = \int_a^x f(t) dt$, then

$$F'(x) = _$$

Q13) Suppose that f, q are differentiable on [a, b] with f', q' integrable on [a, b]. Then

$$\int_{a}^{b} f'(x)g(x)dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f(x)g'(x)dx.$$

Q14) Let ϕ be continuously differentiable on a closed, bounded interval [a, b]. If f is continuous on $\phi([a, b])$ then

$$\int_{\phi(a)}^{\phi(b)} f(t)dt = \int_a^b f(\phi(x))\phi'(x)dx.$$

Q15) Let f be continuous function on [0, 1]. Then evaluate

$$\int_{-1}^1 x f(x^2) dx.$$

Q16) An *n*-manifold is a space that looks locally like Euclidean space \mathbb{R}^n .