Isoperimetric Inequality/Surfaces in \mathbb{R}^{3}

Theorem Let α be a simple, closed, regular curve of length L. Let A be the area bounded by α. Then,

$$
A \leq \frac{L^{2}}{4 \pi}
$$

and $A=\frac{L^{2}}{4 \pi}$ if and only if the image of α is a circle.

Question Show that the ratio $\frac{A}{L^{2}}$ is independent of the size of the figure and depends only on the shape of the boundary.
Note If the perimeter of a region is changed by a factor of λ, the area changes by a factor of λ^{2}. Given an arbitrary curve, we can thus rescale,

$$
\frac{A^{\prime}}{L^{\prime 2}}=\frac{\lambda^{2} A}{(\lambda L)^{2}}=\frac{A}{L^{2}}
$$

Definition [Open Set] We say a set $\mathcal{U} \in \mathbb{R}^{2}$ is open if for each point $(a, b) \in \mathcal{U}, \exists \epsilon>0$ such that each point (x, y) satisfying

$$
\left((x-a)^{2}+(y-b)^{2}\right)^{\frac{1}{2}}<\epsilon
$$

also lies in \mathcal{U}.
Notation Let $\mathbf{r}: \mathcal{U} \rightarrow \mathbb{R}^{3}$. Then $\mathbf{r}=\mathbf{r}(u, v)$. We can write this in component form as,

$$
\mathbf{r}=(x(u, v), y(u, v), z(u, v))
$$

Notation Partial derivatives of a vector-valued function \mathbf{r} with respect to the variable u and v are written as r_{u} and r_{v}, respectively.

$$
\mathbf{r}_{u}=\frac{\partial \mathbf{r}}{\partial u} \quad \mathbf{r}_{v}=\frac{\partial \mathbf{r}}{\partial v}
$$

Notation [Coordinate patch] A coordinate patch (or simple surface) is smooth, one-to-one mapping $\mathbf{r}: \mathcal{U} \rightarrow \mathbb{R}^{3}$ where \mathcal{U} is open and

$$
\mathbf{r}_{u} \times \mathbf{r}_{v} \neq 0
$$

The condition on the cross product implies that both \mathbf{r}_{u} and \mathbf{r}_{v} are not equal to 0 and that they are not parallel.

Definition A coordinate patch

$$
r: \mathcal{U} \rightarrow \mathbb{R}^{3}
$$

is called proper if its inver function

$$
r^{-1}: r(\mathcal{U}) \rightarrow \mathbb{R}^{3}
$$

is continuous.

Definition A smooth surface in \mathbb{R}^{3} is a subset $S \in \mathbb{R}^{3}$ such that each point has a neighborhood $U \subset S$ and a map $r: V \rightarrow \mathbb{R}^{3}$ from an open set $V \subset \mathbb{R}^{2}$ such that

1. $r: V \rightarrow U$ is a homeomorphism
2. $r(u, v)=(x(u, v), y(u, v), z(u, v))$ has derivatives of all orders
3. at each point $r_{u}=\frac{\partial r}{\partial u}$, and $r_{v}=\frac{\partial r}{\partial v}$ are linearly independent.

Example A sphere $r(u, v)=(a \sin u \sin v, a \cos u \sin v, a \cos v)$

Example [Parametric Equation of the Plane]

Parametric Equation of the Plane: $r(u, v)=\gamma+u \alpha+v \beta$. Example [Parametric Equation of Torus]

$$
r(u, v)=(a+b \cos u)((\cos v) \mathbf{i}+(\sin v) \mathbf{j})+b \sin u \mathbf{k}
$$

Example [Tangent Vectors to Parametrized Sufaces]

Definition The tangent plane (or tangent space) of a surface at the point a is the vector space spanned by $r_{u}(a), r_{v}(a)$.

Definition The vectors

$$
n= \pm \frac{r_{u} \times r_{v}}{\left|r_{u} \times r_{v}\right|}
$$

are the two unit normals (inward and outward) to the surface at (u, v). Definition A parametric surface is orientable if $n(u, v)$ varies continuously across the surface and defines only one surface normal at each point on the surface.

Note Not all surfaces can be oriented. For example, a Möbius strip, which can be formed by twisting a strip of paper one half turn and pasting the two ends together, cannot be oriented).

Definition [Monge patch] A Monge patch is a special case of a surface in which the surface is of the form $z=f(x, y)$ for $((x, y) \in \mathcal{U}$. The surface can be parameterized,

$$
\mathbf{r}(u, v)=(u, v, f(u, v))
$$

Note A Monge patch is essentially the graph of a function of the form $z=f(x, y) \cdot \mathcal{U}$ is the projection of the surface onto the $x y$ plane.

To show that a Monge patch is indeed a surface, we should ensure that the condition of regularity is satisfied,

$$
\begin{aligned}
\mathbf{r}_{u} & =\left(1,0, \frac{\partial f}{\partial u}\right) \quad \mathbf{r}_{v}=\left(0,1, \frac{\partial f}{\partial v}\right) \\
& \Rightarrow \mathbf{r}_{u} \times \mathbf{r}_{v}=\left(-\frac{\partial f}{\partial u},-\frac{\partial f}{\partial v}, 1\right) \neq 0
\end{aligned}
$$

Hence the general Monge patch is a simple surface, as claimed.
Note The vectors $\left\{\mathbf{r}_{u}, \mathbf{r}_{v}, \mathbf{n}\right\}$ are linearly independent and thus form a basis of \mathbb{R}^{3}, although it is not an orthonormal basis.
Definition What is the tangent plane to the surface of a function

$$
z=f(x, y)
$$

at $\left(x_{0}, y_{0}\right)$?

Question Find the tangent plane and the normal line to the surface of the function $z=9-x^{2}-y^{2}$ at the point $P_{0}=(1,2,4)$.

Solution

1. $2(x-1)+4(y-2)+1(z-4)=0$
2. The normal line to surface at P_{0} is the line through P_{0} parallel to normal vector.

$$
x=1+2 t, \quad y=2+4 t, \quad z=4+t
$$

Question Find the surface unit normal and the equation of the tangent plane to the cylinder

$$
r(u, v)=(3 \cos u, 3 \sin v, v)
$$

at $r(\pi, 2)=(-3,0,2)$. Solution

$$
n(\pi, 2)=\left.\frac{r_{u} \times r_{v}}{\left|r_{u} \times r_{v}\right|}\right|_{(\pi, 2)}=\left.(\cos u, \sin u, 0)\right|_{(\pi, 2)}=(-1,0,0)
$$

Thus, the equation of the tangent plane is

$$
-1(x+3)+0(y-0)+0(z-0)=0 \Longrightarrow x=-3
$$

Definition[Gradient] If $f: \mathcal{U} \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a differentiable function, the gradient of f at (x, y, z) is the vector in space given by

$$
\nabla f(x, y, z)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

Definition [Directional Derivatives] If $f: \mathcal{U} \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$, the directional derivative of f at $p=x_{0}, y_{0}, z_{0}$) along the vector \mathbf{v} is given by

$$
D_{\mathbf{v}} f=\left.\frac{d}{d t} f(p+t \mathbf{v})\right|_{t=0}=\lim _{t \rightarrow 0} \frac{f(p+t \mathbf{v})-f(p)}{t}
$$

Theorem If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is differentiable, then all directional derivatives exist. The directional derivative of f at $p=\left(x_{0}, y_{0}, z_{0}\right)$ in the direction \mathbf{v} is given by

$$
D_{\mathbf{v}} f=\nabla f(x, y, z) \cdot \mathbf{v}
$$

Surfaces by level sets

Notation Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a smooth function (differentiable) $f=f(x, y, z)$. A level set of a function f is a set,

$$
M_{c}=\{(x, y, z) \mid f(x, y, z)=c\}
$$

Theorem Suppose $\nabla f \neq 0$ everywhere on M_{c}. Then M_{c} is a surface.
Theorem The gradient ∇f is normal to the surface M_{c} at each point on the surface.

Question Find the equation of the tangent plane to the circular cone

$$
x^{2}+y^{2}=z^{2}
$$

at the point $(0.6,0.8,1)$.
Solution Since the equation of the surface can be written $f(x, y, z)=$ $x^{2}+y^{2}-z^{2}=0$. The gradient of f is $\nabla f(x, y, z)=(2 x, 2 y,-2 z)$. At the point $(0.6,0.8,1)$, the vector $\nabla f(0.6,0.8,1)=(1.2,1.6,2)$ is normal to the surface. Therefore the equation of the tangent plane is

$$
1.2(x-0.6)+1.6(y-0.8)+2 .(z-1)=0 \Longrightarrow z=0.6 x+0.8 y
$$

First Fundamental Theorem

Definition A smooth curve lying in the surface is a map

$$
t \rightarrow(u(t), v(t))
$$

with derivatives of all orders such that

$$
\gamma(t)=r(u(t), v(t))
$$

is a parametrized curve in \mathbb{R}^{3}
Note A parametrized curve means that $u(t), v(t)$ have derivatives of all orders and

$$
\gamma^{\prime}=r_{u} u^{\prime}+r_{v} v^{\prime} \neq 0 .
$$

The definition of a surface implies that r_{u}, r_{v} are linearly independent, so this condition is equivalent to $\left(u^{\prime}, v^{\prime}\right) \neq 0$.

The arc length of such a curve from $t=a$ to $t=b$ is:

$$
\begin{aligned}
L[\gamma] & =\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{\gamma^{\prime}(t) \cdot \gamma^{\prime}(t)} d t \\
& =\int_{a}^{b} \sqrt{\left(r_{u} u^{\prime}+r_{v} v^{\prime}\right) \cdot\left(r_{u} u^{\prime}+r_{v} v^{\prime}\right)} d t \\
& =\int_{a}^{b} \sqrt{E u^{\prime 2}+2 F u^{\prime} v^{\prime}+G v^{\prime 2}} d t
\end{aligned}
$$

where

$$
E=r_{u} \cdot r_{u}, F=r_{u} \cdot r_{v}, G=r_{v} \cdot r_{v}
$$

Definition The first fundamental form of a surface in \mathbb{R}^{3} is the expression

$$
E d u^{2}+2 F d u d v+G d v^{2}
$$

where

$$
E=r_{u} \cdot r_{u}, F=r_{u} \cdot r_{v}, G=r_{v} \cdot r_{v}
$$

Note The analogue of the first fundamental form on an abstract smooth surface \mathcal{M} is called a Riemannian metric.
Note To find the length of a curve $\gamma=\gamma(u(t), v(t))$ on the surface, we calculate

$$
\int \sqrt{E\left(\frac{d u}{d t}\right)^{2}+2 F \frac{d u}{d t}+G\left(\frac{d u}{d t}\right)^{2} d t}
$$

