Green's/ Divergence/ Stokes Integrals

Question Verify the formula $\operatorname{div}(\operatorname{curl} \mathbf{F})=0$ where

$$
\mathbf{F}=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}
$$

Question1 Use Green's theorem to evaluate the line integral

$$
\int_{C}(x+y) d x+\left(3 y+y^{2}-x^{2}\right) d y
$$

where C is the triangle with vertices $(0,0),(2,0)$ and $(2,4)$ oriented in a counterclockwise direction.
Question2 Verify that the vector field

$$
\mathbf{F}(x, y, z)=(y+2 z) \mathbf{i}+(x-3 z) \mathbf{j}+(2 x-3 y) \mathbf{k}
$$

is conservative.
Question3 Show that Area of

$$
R=\frac{1}{2} \int_{C} x d y-y d x
$$

Question4

Find the area enclosed by the ellipse

$$
\mathbf{r}(t)=(a \cos t) \mathbf{i}+(b \sin t) \mathbf{j}
$$

for $0 \leq t \leq 2 \pi$, where a and b are constants.
Question5 Evaluate the line integral

$$
\int_{C} x y d x+x^{2} d y
$$

where C is the parabolic arc given by $x=y^{2}$ from $(4,-2)$ to $(9,3)$. Question6 Evaluate the line integral

$$
\int_{C} y d x+x^{2} d y
$$

where C is the parabolic arc given by $y=4 x-x^{2}$ from $(4,0)$ to $(1,3)$. Question7 Verify the formula $\operatorname{curl}(\nabla f)=\mathbf{0}$ where $f(x, y, z)$ has continuous second partial derivatives. Why is it important for f to have continuous second partial derivatives?
Question8 Is the vector field

$$
\mathbf{F}(x, y, z)=\left(2 x+y^{2}\right) \mathbf{i}+\left(2 x y+e^{z}\right) \mathbf{j}+y e^{z} \mathbf{k}
$$

conservative?
Question9 Evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the curve

$$
\mathbf{r}(t)=t \mathbf{i}+(1-t) \mathbf{j}+t^{2} \mathbf{k}
$$

where $0 \leq t \leq 2$ and

$$
\mathbf{F}(x, y, z)=\left(2 x+y^{2}\right) \mathbf{i}+\left(2 x y+e^{z}\right) \mathbf{j}+y e^{z} \mathbf{k}
$$

Question10 Use Green's theorem to evaluate the line integral

$$
\int_{C}(x-4 y) d x+\left(3 y+e^{y^{5}}+x^{2}\right) d y
$$

where C is the triangle with vertices $(0,0),(2,0)$ and $(0,4)$ oriented in a counterclockwise direction. How would the result change if C had a clockwise orientation?
Question11 Suppose C is simple closed curve with counterclockwise orientation enclosing a region R satisfying the hypothesis of Green's theorem. Show that the area of R is $\int_{C} x d y$.
Question12 Let S be the surface of the cube bounded by the planes $x=0, x=2, y=0, y=4, z=0, z=3$, and let S be oriented with outward unit normal. Use the divergence theorem to find

$$
\iint_{S} \mathbf{F} \cdot \mathbf{N} d S
$$

where

$$
\mathbf{F}(x, y, z)=\left(x+z e^{y} \sin (y z)\right) \mathbf{i}+\left(z \sin \left(e^{z}\right) \cos z+y^{2}\right) \mathbf{j}-z \mathbf{k}
$$

Question13 Find the volume of an ice cream cone bounded by the hemisphere $z=\sqrt{8-x^{2}-y^{2}}$ and the cone $z=\sqrt{x^{2}+y^{2}}$.

Question14 Let S be the surface $z=x^{2}+y^{2}$ where $0 \leq z \leq 4$. Set up the integral to find the flux of the vector field

$$
\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

through the surface S oriented with upward unit normal. Question15 Calculate the flux of the vector field

$$
\vec{F}=x \vec{i}+y \vec{j}+z \vec{k}
$$

across the surface S given by

$$
z=\sqrt{1-x^{2}-y^{2}}
$$

where (x, y) ranges over the unit disk.
Question 16 Evaluate $\int_{C} x+y^{2}-z d s$ where C is the straight-line segment from $(0,1,1)$ to $(1,0,2)$.
Question 17 Compute the work done by the field $F=\left\langle 2 x+3 y^{3}, 9 x y^{2}+\right.$ $2 y\rangle$ as a particle is moved from $(1,0)$ to $(2,0)$ along the path

$$
r(t)=\left\langle t^{17}+1, t^{3}-t^{2}\right\rangle
$$

Question 18 Evaluate the line integral $\int_{C}\left(2 x y^{2}-5 \cos x\right) d x+\left(-3 x^{2}-\right.$ $\left.7 e^{y}\right) d y$, where C is the boundary of the rectangle with vertices $(0,1)$, $(2,1),(2,2)$, and $(0,2)$, with positive (counterclockwise) orientation.

Question 19 A simply connected region R in the plane satisfies the following

$$
\iint_{R} 1 d A=5, \quad \iint_{R} x d A=5, \quad \iint_{R} y d A=5 .
$$

What is the value of the line integral

$$
\int_{C}\left(x^{2}+x y+3 y\right) d x+\left(\arctan \left(y^{2}\right)+3 x^{2}+2 x y+x\right) d y
$$

, where C is the boundary of R oriented in a counterclockwise direction. Question 20 Evaluate $\int_{C}\left(x^{2}+y^{2}\right) d x+2 x y d y$, where:
(a) $C: x=t, \quad y=2 t, \quad 0 \leq t \leq 1$
(b) $C: x=t, \quad y=2 t^{2}, \quad 0 \leq t \leq 1$

Question 21 Evaluate $\int_{C}\left(x^{2}+y^{2}\right) d x+2 x y d y$, where C is the polygonal path from $(0,0)$ to $(0,2)$ to $(1,2)$.
Question 22 Evaluate $\oint_{C}\left(x^{2}+y^{2}\right) d x+2 x y d y$, where C is the boundary (traversed counterclockwise) of the region

$$
R=\left\{(x, y): 0 \leq x \leq 1,2 x^{2} \leq y \leq 2 x\right\}
$$

Question 23 A torus T is a surface obtained by revolving a circle of radius a in the $y z$-plane around the z-axis, where the circle's center is at a distance b from the z-axis $(0<a<b)$. Find the surface area of T. Question 24 Find the surface area of the paraboloid $z=x^{2}+y^{2}$ below the plane $z=1$
Question 25 Evaluate

$$
I=\iint_{S} x^{2} y^{2} z^{2} d S
$$

over the curved surface of the cone $x^{2}+y^{2}=z^{2}$ which lies between $z=0$ and $z=1$.

Question 26 Find the surface area of the paraboloid given by

$$
z=4-x^{2}-y^{2}
$$

for $z \geq 0$.
Question 27

1. Sketch the surface S given by the equation

$$
x+2 y+3 z=6
$$

in the first octant.
2. Find the surface area of S.

Question 28 Evaluate

$$
\iint_{S}(3 x \vec{i}+2 y \vec{j}) d S
$$

where S is the sphere

$$
x^{2}+y^{2}+z^{2}=9
$$

Question 29 Evaluate

$$
\iint_{S} y d S
$$

where S is the surface $z=x+y^{2}, \quad 0 \leq x \leq 1,0 \leq y \leq 2$.
Question 30 Let S be the boundary of the solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=1$, with outward orientation.

1. Find the surface area of S. Note that the surface S consists of a portion of the paraboloid $z=x^{2}+y^{2}$ and a portion of the plane $z=1$.
2. Use the Divergence Theorem to calculate the surface integral $\iint_{S} F \cdot d S$, where $F=\left(x+y^{2} z^{2}\right) \mathbf{i}+\left(y+z^{2} x^{2}\right) \mathbf{j}+\left(z+x^{2} y^{2}\right) \mathbf{k}$.
