Instructions: Show all of your work, and clearly indicate your answers.
Q1 Suppose $f$ is defined on $[-1,3]$ and satisfies:

$$
f(x)= \begin{cases}x, & -1 \leq x<0 \\ -\frac{1}{2} x^{2}, & 0 \leq x<1 \\ \sqrt{1-(x-2)^{2}}, & 1 \leq x \leq 3, x \neq 2 \\ 0, & x=2\end{cases}
$$

(a) Sketch the graph of the function given above.
(b) Does $\lim _{x \rightarrow 2} f(x)$ exist? Justify your answer.
(c) Does $\lim _{x \rightarrow 1} f(x)$ exist? Justify your answer.
(d) Does $\lim _{x \rightarrow 4} f(x)$ exist? Justify your answer.

## Solution:

Q2 Use Sandwich Theorem and limit laws to show that

$$
\lim _{x \rightarrow 0}\left(x^{2} \cos \left(\frac{2}{x}\right)+1\right)\left(x^{2} \cos \left(\frac{2}{x}\right)-1\right)=-1
$$

## Solution:

Q3 Find the domain of the function

$$
f(x)=\sqrt{1-x}+\frac{1}{\sqrt{1+x}}
$$

## Solution:

Q4

1. Find the domain of the function $f(x)=\sqrt{6-2 x}$.
2. Suppose that $f(x)=\frac{1}{4-x}$ and $g(x)=2^{x}$.
a. Find a formula for $(f \circ g)(x)$.
b. Find the domain of $(f \circ g)(x)$.

## Solution:

Q5 If the point $(2,3)$ is on the graph of an odd function, then what other point must also be on the graph?

## Solution:

Q6 Given that $f(x)=\frac{1}{4} \ln (2 x-5)$, find a formula for $f^{-1}(x)$.

## Solution:

Q7 What is the domain of the function $f(x)=\sqrt{x+9}+\sqrt{x+2}$ ?

1. $(-\infty,-9]$
2. $(-\infty,-2]$
3. $(-\infty, 2]$
4. $(-\infty, 9]$
5. $(-\infty, \infty)$
6. $[-9, \infty)$
7. $[-2, \infty)$
8. $[2, \infty)$

## Solution:

Q8 If the point $(3,-6)$ is on the graph of a one-to-one function $f$, then which one of the following points must be on the graph of $f^{-1}$ ?

1. $(-6,3)$
2. $(-6,-3)$
3. $(3,6)$
4. $(-3,6)$
5. $(-3,-6)$
6. $(6,3)$
7. $(6,-3)$

## Solution:

Q9 If the point $(3,-6)$ is on the graph of an odd function $f$, then which one of the following points must also be on the graph of $f$ ?

1. $(-6,3)$
2. $(-6,-3)$
3. $(3,6)$
4. $(-3,6)$
5. $(-3,-6)$
6. $(6,3)$
7. $(6,-3)$

## Solution:

Q10 If the point $(3,-6)$ is on the graph of an even function $f$, then which one of the following points must also be on the graph of $f$ ?

1. $(-6,3)$
2. $(-6,-3)$
3. $(3,6)$
4. $(-3,6)$
5. $(-3,-6)$
6. $(6,3)$
7. $(6,-3)$

## Solution:

Q11 Find a formula for $f^{-1}(x)$ given that $f(x)=\ln \left(\frac{x-8}{5}\right)$.

## Solution:

Q12 Suppose that $f(x)$ is an odd function, $g(x)$ is an even function, $f(5)=3$ and $g(4)=-5$. What is the value of $(f \circ g)(-4)$.
Ans: $(f \circ g)(-4)=-3$.

## Solution:

Q13 Determine the domain of the given function.

$$
f(x)=\frac{x^{2}-1}{3 \sqrt{2}-\sqrt{50-2 x^{2}}}
$$

Ans: $-5 \leq x \leq 5$ and $x \neq \pm 4$

## Solution:

Q14 Circle true if the given statement is always true. Otherwise circle false.

1. If $v(t)$ is an even function and $w(t)$ is an odd function, then $p(t)=$ $v(t) w(t)$ is an odd function.
true or false ?
2. Given a function $g(x)$, if the finite limit $\lim _{x \rightarrow 9} \frac{g(x)-g(9)}{x-9}$ exists then $g(x)$ is continuous at 9.
true or false ?
3. If a function $h(x)$ is not defined at $x=a$, then $\lim _{x \rightarrow a} h(x)$ does not exist.
true or false ?
4. If a function $f(x)$ is one-to-one then $f(1)=1$.
true or false?
5. A function which is continuous at a point $a$ must also be differentiable at $a$.
true or false?

## Solution:

Q15 Evaluate the following limits.

1. $\lim _{x \rightarrow 0} \frac{\sqrt{25+16 x^{2}}-5}{2 x^{2}}$

Ans:4/5
2. $\lim _{x \rightarrow 8^{+}} \frac{\ln x}{16-2 x}$

Ans:- $-\infty$

## Solution:

Q16 Which one of the following equations must hold in order for a function $g$ to be continuous at a number $k$ ?
(a) $\lim _{x \rightarrow \infty} g(x)=g(k)$
(b) $\lim _{x \rightarrow \infty} g(x)=0$
(c) $\lim _{x \rightarrow \infty} g(x)=k$
(d) $\lim _{x \rightarrow 0} g(x)=g(k)$
(e) $\lim _{x \rightarrow 0} g(x)=0$
(f) $\lim _{x \rightarrow 0} g(x)=k$
(g) $\lim _{x \rightarrow k} g(x)=g(k)$
(h) $\lim _{x \rightarrow k} g(x)=0$
(i) $\lim _{x \rightarrow k} g(x)=k$

## Solution:

Q17 Find the equation of the line which goes through the point $(3,-2)$ and is parallel to the line given by the equation $2 x-3 y=1$.

## Solution:

Writing the equation of the given line as $y=\frac{2}{3} x-\frac{1}{3}$, we see it has slope $m=2 / 3$. Thus, the line we seek goes through $(3,-2)$ and has slope $2 / 3$, so has the equation

$$
\frac{y+2}{x-3}=\frac{2}{3} \quad \text { or } \quad y=\frac{2}{3} x-4
$$

Q18 Find the equation of the line which goes through the point $(0,7)$ and is perpendicular to the line given by the equation $2 x+3 y=10$.

## Solution:

The given equation can be written as $y=-\frac{2}{3} x+10 / 3$. This line has slope $-2 / 3$, so the line we seek has slope $3 / 2$. Then, by the point-slope formula

$$
\frac{y-7}{x-0}=\frac{3}{2}
$$

which simplifies to $3 x-2 y=-14$.

## Solution:

Q19 Determine the domain of the given function.

$$
f(x)=\frac{\sqrt{25-x^{2}}+\sqrt{9+\sin (x-1)}}{x^{2}-8 x-20}
$$

Ans: $[-5,-2) \bigcup(-2,5)]$

## Solution:

Q20 Given that $w(x)=\frac{3}{\ln \left(2 e^{x}+5\right)}$, find a formula for $w^{-1}(x)$. Ans: $w^{-1}(x)=\ln \left(\frac{e^{3 / x}-5}{2}\right)$

## Solution:

Q21 Carefully sketch a graph of the following function. You should clearly label the value for any intercepts or asymptotes.

$$
y=2-6 e^{-x}
$$



Q22 Suppose that $f(x)=\frac{1}{\sqrt{5-x}}$ and $g(x)=\sqrt{x-2}$. What is the domain of the composite function $(f \circ g)(x)$ ? Ans: $[2,27]$

## Solution:

Q23 For what value of the constant $C$ is the function $f$ continuous on $(-\infty, \infty)$ ?

$$
f(x)=\left\{\begin{array}{lc}
\frac{6 x+\sin x}{2 x} & \text { if } \quad x<0 \\
e^{x}+C & \text { if } \quad x \geq 0
\end{array}\right.
$$

## Solution:

Ans: 5/2.
Q24 Is the following function even, odd or neither?

## Solution:

$$
g(x)=\left(3 x^{2}+\cos ^{5} x\right)^{7}
$$

## Solution:

Q25 What is the domain of the function $f(x)=\sqrt{5-\sqrt{2 x-1}}$ ?

## Solution:

Q26 Suppose that $f$ is a one-to-one function which takes on the following values.

$$
\begin{gathered}
f(-3)=8, f(-2)=3, f(-1)=1 / 3, f(0)=-1 / 3, f(1)=-3 \\
f(2)=-4, f(3)=-11
\end{gathered}
$$

What is the value of $f^{-1}(3)$ ?

## Solution:

Q27 There is an odd function $f(x)$ which is continuous at all real numbers and takes on the following values.
$f(1)=2, \quad f(2)=-4, \quad f(3)=5, \quad f(4)=6, \quad f(5)=4, \quad f(6)=-2$

Evaluate $\lim _{x \rightarrow-4} f(x)$.

## Solution:

Q28 What is the equation of the line which passes through the point $(0,2)$ and is parallel to the line $4 x+2 y=3$ ?
(a) $y=-2 x+2$
(b) $y=-2 x$
(c) $y=2 x+2$
(d) $y=0.5 x+2$ $y=-0.5 x+2$

## Solution:

Q29 If ball is thrown upward from a height of 100 feet with an initial velocity of 64 feet per second, its height is given by the formula

$$
h=-16 t^{2}+64 t+100,
$$

where $h$ is the height in feet and $t$ is the time in seconds. What is the maximum height the ball reaches?
(a) 164 ft .
(b) 144 ft .
(c) 196 ft .
(d) 200 ft .
(e) 150 ft .

## Solution:

Q30 The domain of $f(x)=\frac{x^{3}-1}{(x+2)\left(x^{2}+3\right)}$ is...

## Solution:

Q31 The average rate of change of the function $y=3 x+x^{2}+5$ over the interval $[1,1.1]$ is...

## Solution:

Q32 Given

$$
f(x)= \begin{cases}x+1 & x \leq 1 \\ -2 x+2 & x>1\end{cases}
$$

Compute

$$
\lim _{x \rightarrow 1} f(x)
$$

## Solution:

Ans: It does not exist
Q33 Which one of the following equations must hold in order for a function $f$ to be continuous at a number $b$ ?
(a) $\lim _{x \rightarrow 0} f(x)=b$
(b) $\lim _{x \rightarrow 0} f(x)=0$
(c) $\lim _{x \rightarrow 0} f(x)=f(b)$
(d) $\lim _{x \rightarrow b} f(x)=b$
(e) $\lim _{x \rightarrow b} f(x)=0$
(f) $\lim _{x \rightarrow b} f(x)=f(b)$
(g) $\lim _{x \rightarrow \infty} f(x)=b$
(h) $\lim _{x \rightarrow \infty} f(x)=0$
(i) $\lim _{x \rightarrow \infty} f(x)=f(b)$

## Solution:

Q34 Suppose that $f$ and $g$ are one-to-one functions which take on the following values.
$f(-2)=2, \quad f(-1)=1 / 2, \quad f(0)=-1 / 2, \quad f(1)=-2, \quad f(2)=-42 .(-6,-3)$
$g(-2)=-4, \quad g(-1)=-2, \quad g(0)=-1 / 2, \quad g(1)=1 / 2, \quad g(2)=2$
What is the value of

$$
f^{-1}\left(g^{-1}(-4)\right)
$$

$?$

## Solution:

Q35 What value of $c$ makes the following function continuous on $(-\infty, \infty)$ ?

$$
f(x)=\left\{\begin{array}{lll}
x^{2}+5 & \text { for } & x<2 \\
5 x+c & \text { for } & x \geq 2
\end{array}\right.
$$

## Solution:

$x^{2}+5$ is continuous for $x<2$ and $5 x+c$ is continuous for $x>2$. At $x=2$, we must check that $\lim _{x \rightarrow 2} f(x)=f(2)$

1. $f(2)=5.2+c=10+c$
2. $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{2}+5\right)=9$
3. $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(5 x+c)=10+c$

Solving $10+c=9$ gives $c=-1$.
Q36 Find a formula for $f^{-1}(x)$ given that $f(x)=\ln \left(\frac{x-8}{5}\right)$.

## Solution:

Q37 If the point $(3,-6)$ is on the graph of an odd function $f$, then which one of the following points must also be on the graph of $f$ ?

1. $(-6,3)$
2. $(3,6)$
3. $(-3,6)$
4. $(-3,-6)$
5. $(6,3)$
6. $(6,-3)$

## Solution:

We have $f(3)=-6$. Since $f$ is odd $f(-3)=-(-6)=6$ so $(-3,6)$ is on the graph of $f$.
Q38 If the point $(3,-6)$ is on the graph of an odd function $f$, then which one of the following points must also be on the graph of $f$ ?

1. $(-6,3)$
2. $(-6,-3)$
3. $(3,6)$
4. $(-3,6)$
5. $(-3,-6)$
6. $(6,3)$
7. $(6,-3)$

## Solution:

We have $f(3)=-6$. Since $f$ is even $f(-3)=-6$ so $(-3,-6)$ is on the graph of $f$.

Q39 What is the domain of $f^{-1}$ ?

## Solution: The range of $f$.

Q40 What is the range of $f^{-1}$ ?

## Solution:

Q41 Let $f(x)=\sqrt{9-x}, \quad g(x)=x^{2}$.

- Find the formula for $f \circ g$, and find the domain of $f \circ g$.
- Find the formula for $g \circ f$, and find the domain of $g \circ f$.


## Solution:

- $D_{f \circ g}=[-3,3]$.
- $D_{g \circ f}=(-\infty, 9]$.


## Q42 Find

$$
\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h} .
$$

Solution:. By inserting $h=0$ we see that both numerator and denominator is zero. This is sometimes denoted,

$$
\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

, and is called a zero-over-zero expression. In general, nothing can be known about the limit from simply knowing that it is a zero expression. The strategy is to manipulate the expression until we can apply the limit laws. Often when you see an expression with a
square root, it is a good idea to "rationalize" the fraction as follows:

$$
\begin{aligned}
\frac{\sqrt{4+h}-2}{h} & =\frac{(\sqrt{4+h}-2)(\sqrt{4+h}+2)}{h(\sqrt{4+h}+2)} \\
& =\frac{(4+h)-4}{h(\sqrt{4+h}+2)} \\
& =\frac{1}{\sqrt{4+h}+2} \rightarrow \frac{1}{4}
\end{aligned}
$$

as $h \rightarrow 0$. In the last step we used the limit law
$\lim (f / g)=\lim f / \lim g$, which is permissible, since the limit of the denominator exists and is $\neq 0$.

## Q43

Find the following limits:

1. $\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{9 x^{4}+10 x}}$.
2. $\lim _{x \rightarrow 0} \sin (\cos x)$.

## Solution:

1. 

$$
\begin{align*}
\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{9 x^{4}+10 x}} & =\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2} \sqrt{9+10 / x^{3}}}  \tag{1}\\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{9+10 / x^{3}}}  \tag{2}\\
& =\frac{1}{3} \tag{3}
\end{align*}
$$

2. By continuity of sin and cos we have:

$$
\lim _{x \rightarrow 0} \sin (\cos x)=\sin \left(\lim _{x \rightarrow 0} \cos (x)\right)=\sin (\cos (0))=\sin (1)
$$

Q44 Find the following limits:

1. $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ (Ans: DNE (does not exist))
2. $\lim _{x \rightarrow 0} \tan \left(\frac{1}{x}\right)$ (Ans: DNE )
3. $\lim _{x \rightarrow 0} \frac{1}{\sin x}$ (Ans: DNE)

Solution: $\lim _{x \rightarrow 0^{+}} \frac{1}{\sin x}=\infty \quad \lim _{x \rightarrow 0^{-}} \frac{1}{\sin x}=-\infty \quad$ Therefore the limit does not exist. (DNE )
4. $\lim _{x \rightarrow 0} \frac{1}{\cos x}$ (Ans: 1 )
5. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{x}{\cos x}$ (Ans: DNE )
6. $\lim _{x \rightarrow 0} \frac{\cos 3 x}{\sin x}$ (Ans: DNE )
7. $\lim _{x \rightarrow 0} \frac{\cos x}{x}$ (Ans: DNE )
8. $\lim _{x \rightarrow 0} \frac{\sin x}{\sqrt{x}}$ (Ans:0)
9. $\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos x}$ (Ans: 2 )
10. $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos 2 x}{\cos x-\sin x}$ (Ans: $\sqrt{2}$ )
11. $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos 2 x}{1-\sqrt{2} \sin x}$ (Ans: 2 )
12. $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$ (Ans: 0 )
13. $\lim _{x \rightarrow \frac{\pi}{2}} \tan x$ (Ans: DNE )
14. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos x}{\sin 2 x}$ (Ans: $1 / 2$ )
15. $\lim _{x \rightarrow 0} \frac{x}{x+\sin x}($ Ans: $1 / 2)$

## Solution:

Q45 Consider the curve $y=f(x)$, where

$$
f(x)=\frac{4 x^{2}}{2 x+1}
$$

(a) Find the domain of $f$.
(b) Find any $x$-intercepts or $y$-intercepts of the curve.
(c) check for symmetries of the curve $y=f(x)$.
(d) Find any vertical, horizontal, or slant asymptotes for the curve $y=f(x)$.

## Solution:

(a) The function $f$ is defined for all $x$ except $x=-1 / 2$, so the domain of $f$ is the set $(-\infty,-1 / 2) \cup(1 / 2, \infty)$.
(b) The $y$-intercept of the curve is where the curve crosses the $y$-axis (i.e., at $x=0$ ), and since $f(0)=0$,

- the $y$-intercept of the curve is $y=0$.

The curve has $x$-intercepts for those $x$ for which $f(x)=0$. Since

$$
f(x)=\frac{4 x^{2}}{2 x+1}=0, \quad \text { at } x=0
$$

it follows that

- there is one $x$-intercept for the curve, at $x=0$.
(c) To check for symmetries, we recall that the curve $y=f(x)$ is symmetric about the $y$-axis if $f(-x)=f(x)$, and symmetric about the
origin if $f(-x)=-f(x)$, for all $x$ in the domain of $f$. For this particular function,

$$
f(-x)=\frac{4(-x)^{2}}{2(-x)+1}=\frac{4 x^{2}}{-2 x+1}
$$

so $f(-x) \neq f(x)$ and $f(-x) \neq-f(x)$. The curve is not symmetric about the $y$-axis or about the origin.
(d) The determination of vertical, horizontal, or slant asymptotes is next:
(i) Vertical asymptotes: The function $f$ is undefined at $x=$ $-1 / 2$. Then since

$$
\lim _{x \rightarrow(-1 / 2)^{-}} \frac{4 x^{2}}{2 x+1}=-\infty, \quad \text { and } \quad \lim _{x \rightarrow(-1 / 2)^{+}} \frac{4 x^{2}}{2 x+1}=+\infty
$$

the curve has a vertical asymptote at $x=-1 / 2$.
(ii) Horizontal asymptotes: Looking at the behavior of $f(x)$ as $x \rightarrow \pm \infty$,

$$
\lim _{x \rightarrow \infty} \frac{4 x^{2}}{2 x+1}=\lim _{x \rightarrow \infty} \frac{4 x}{2+(1 / x)}=+\infty
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{4 x^{2}}{2 x+1}=\lim _{x \rightarrow \infty} \frac{4 x}{2+(1 / x)}=-\infty
$$

so the curve does not approach a constant (i.e., a horizontal line) as $x \rightarrow \pm \infty$. Thus there are no horizontal asymptotes for this curve.

Consider the curve $y=f(x)$, where

$$
f(x)=\frac{x^{2}+x+1}{x^{2}-x-2}
$$

(a) Find the domain of $f$.
(b) Find any $x$-intercepts or $y$-intercepts of the curve.
(c) check for symmetries of the curve $y=f(x)$.
(d) Find any vertical, horizontal, or slant asymptotes for the curve $y=f(x)$.

Q47 Consider the curve $y=f(x)$, where

$$
f(x)=\frac{3 x-2}{x-1}
$$

(a) Find the domain of $f$.
(b) Find any $x$-intercepts or $y$-intercepts of the curve.
(c) check for symmetries of the curve $y=f(x)$.
(d) Find any vertical, horizontal, or slant asymptotes for the curve $y=f(x)$.

Q48 Consider the curve $y=f(x)$, where

$$
f(x)=\frac{x^{2}+2 x+1}{x^{2}+1}
$$

(a) Find the domain of $f$.
(b) Find any $x$-intercepts or $y$-intercepts of the curve.
(c) check for symmetries of the curve $y=f(x)$.
(d) Find any vertical, horizontal, or slant asymptotes for the curve $y=f(x)$.

Q49 Find the vertical and horizontal asymptotes of

$$
f(x)=\frac{x-1}{x^{2}-4 x-5}
$$

(a) Find the domain of $f$.
(b) Find any $x$-intercepts or $y$-intercepts of the curve.
(c) check for symmetries of the curve $y=f(x)$.
(d) Find any vertical, horizontal, or slant asymptotes for the curve $y=f(x)$.

Find the average rate of change of the function

$$
f(x)=\tan x-x
$$

over the interval $[-\pi / 4, \pi / 4]$.
Solution: The average rate of change of a function $f(x)$ over the interval $[a, b]$ is given by the slope of the secant line joining $(a,(f(a))$ to $(b, f(b))$, or by

$$
\frac{f(b)-f(a)}{b-a}
$$

So the average rate of change of $f(x)=\tan x-x$ over the interval $[-\pi / 4, \pi / 4]$ is given by

$$
\begin{aligned}
\frac{f(\pi / 4)-f(-\pi / 4)}{\pi / 4-(-\pi / 4)} & =\frac{(\tan (\pi / 4)-\pi / 4)-(\tan (-\pi / 4)-(-\pi / 4))}{\pi / 2} \\
& =\frac{2}{\pi}\left[\left(1-\frac{\pi}{4}\right)-\left(-1+\frac{\pi}{4}\right)\right] \\
& =\frac{2}{\pi}\left(2-\frac{\pi}{2}\right) .
\end{aligned}
$$

Q51 Let

$$
f(x)=x^{3}+3
$$

Show that $f$ has at least one real zero. In other words, show that $f(c)=$ 0 for some real number $c$ (you do not have to calculate $c$ explicitly).

Solution: $f(-2)<0$ and $f(0)>0$. By IVT, $f$ has a root in $(-2,0)$.

## Q52

## Solution:

Q53 Solution:
Q54 Solution:
Q55 Solution:
Q56 Solution:
Q57 Solution:
Q58 Solution:

## Solution:

Q59 Solution:

## Q60

## Solution:

|  | Solution: |
| :--- | :--- |
| Q62 |  |
|  | Solution: |
| Q63 |  |
|  | Solution: |
| Q64 |  |
|  | Solution: |
| Q65 |  |
|  | Solution: |
| Q66 |  |
|  | Solution: |
| Q67 |  |
|  |  |
| Q68 | Solution: |
|  |  |
| Q69 |  |
|  | Solution: |
| Q70 |  |
|  | Solution: |
|  |  |
| Q100 |  |
|  |  |

