Sample Test I

S0

Determine which of the following series converge. Justify your answer.

- (a) $\sum_{n=2}^{\infty} \frac{1}{[n+(-1)^n]^2}$
- (b) $\sum [\sqrt{n+1} \sqrt{n}]$
- (c) $\sum \frac{n!}{n^n}$
- $(d) \sum_{n=2}^{\infty} \frac{\log n}{n}$
- (e) $\sum_{n=4}^{\infty} \frac{1}{n(\log n)(\log \log n)}$

S1(Not included)

Find the radius of convergence and determine the exact interval of convergence:

$$\sum \left(\frac{n^3}{3^n}\right) x^n$$

S2

- 1. Let $\langle a_n \rangle_{n \in \mathbb{N}}$ be a sequence. Define what it means to say $\sum_{n=0}^{\infty} a_n$ converges.
- **2.** Determine whether the following statement is true: For every sequence $\langle a_n \rangle_{n \in \mathbb{N}}$ from \mathbb{R} , $\sum_{n=0}^{\infty} a_n$ converges if and only if $\lim_{n \to \infty} a_n = 0$. [If true, then give a proof. If false, then give a counterexample.]

S3(Not included)

Compute the Taylor series about 0, for the function $f(x) = e^x$.

S4(Not included)

Using the ratio or root test, determine the convergence or divergence of the following series

- 1. $\sum_{n=1}^{\infty} \frac{n!}{2^{e^n}}$
- 2. $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
- 3. $\sum_{n=1}^{\infty} \frac{n^3+2^n}{e^n}$

S5(Not included)

Find the Taylor expansion of ln(x) at x = 2. Specify its radius and interval of convergence.

S6(Not included)

Find a power series representation for the following function f(x). Also, find the interval of convergence.

$$f(x) = \frac{x}{2+x}$$

S7(Not included)

Find the values of x for which the series converges. Find the sum of the series for those values of x.

$$\sum_{n=0}^{\infty} \frac{(x+3)^n}{2^n}$$

Q8

Let $f(x) = \int_{2}^{x} (t^{3} - t^{2} - 4) dt$ then find f'(t).

Q9

Evaluate $\int \cos^3 x \, dx$

Q10

Find the volume of the solid that is obtained when the region under the curve y = x over the interval [1, 2] is revolved about the x-axis.

Q11

Compute the length of the arc of the semicubical parabola $y^2 = x^3$ between the points (0,0) and (4,8).

Q12

Evaluate

$$\int \frac{1}{x(x-2)} dx$$

Q13

Evaluate.

$$\int_0^\infty x e^{-x} \, \mathrm{d}x$$

Q14

Show that the surface area of a unit sphere is 4π .

Q15

Evaluate $\int \sqrt{a^2 - x^2} dx$.

Q16

Show that

$$\int_{-a}^{a} \sqrt{a^2 - x^2} dx = \frac{\pi a^2}{2}.$$

Q17

Evaluate $\int \cos^5(x) dx$.

Q18

Evaluate
$$\int_0^{\pi/4} \sqrt{1 + \cos(4x)} dx.$$

Q19

Evaluate
$$\int \frac{3x-1}{x^2-x-6} dx.$$

Q20

Determine whether or not $\int_{1}^{\infty} \frac{1}{x+e^x} dx$ converges or diverges.

Q21

Evaluate
$$\int_{1}^{4} \frac{3x+1}{(x-5)(x+3)} dx$$

Q22

Evaluate
$$\int e^{2x} \sqrt{1 - e^{2x}} dx$$
.

Q23(Not included)

Determine the radius of convergence of: $\sum_{n=1}^{+\infty} n! x^n$.

Q24(Not included)

Let $f(x) = \cos(5x^2)$. Find $f^{(100)}(0)$.

Q25

Compute the sum of the series: $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$

Q26

Compute $\int \cos(\sqrt{x})dx$

Q27

Determine whether or not $\sum_{n=1}^{\infty} \frac{n+1}{n^3}$ converges or diverges. Give your reasoning.

Q28

Determine whether or not $\sum_{n=2}^{\infty} \frac{(n+1)^2}{n^3 \ln n}$ converges or diverges. Give your reasoning.

Q29

Determine whether or not $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+21}$ converges or diverges. Give your reasoning.

Q30

If f(0) = g(0) = 0, show that

$$\int_0^a f(x)g''(x) \, dx = f(a)g'(a) - f'(a)g(a) + \int_0^a f''(x)g(x) \, dx$$

Q31

Evaluate the integral $\int e^{-\theta} \cos 3\theta \, d\theta$.

Q32

Determine whether the following integral is convergent or divergent. Evaluate it if it is convergent.

$$\int_{1}^{9} \frac{1}{\sqrt[3]{x-9}} \, dx$$

Q33

A series $\sum a_n$ is defined by the equations

$$a_1 = 1$$
, $a_{n+1} = \frac{2 + \cos n}{\sqrt{n}} a_n$

Determine whether $\sum a_n$ converges or diverges.

Q34

Use substitution to compute

$$\int \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx.$$

Q35

Use integration by parts to compute

$$\int \cos x \ln(\sin x) \, dx.$$

Q36

Compute the trigonometric integral

$$\int \sin^2 \theta \cos^2 \theta \, d\theta.$$

Q37

Evaluate the definite integral.

$$\int_{1}^{2} x \sqrt{x - 1} dx$$

Q38

Evaluate the integral by interpreting it in terms of area $\int_{-2}^2 \sqrt{4-x^2} dx$

 $Q39(Not\ included)$

Find the interval of convergence of $\sum_{n=0}^{\infty} \frac{(4-2x)^n}{3n-1}$.

Q40

Determine whether $\sum_{i=1}^{\infty} \sin(1/n)$ converges or diverges.

Q41

Evaluate $\int \frac{\ln(\tan(x))}{\sin(x)\cos(x)} dx$.

Q42

Evaluate $\int \sqrt{4-x^2} dx$.

Q43

Evaluate $\int \tan(x)^3 dx$.

Q44

Evaluate $\int_0^{\pi/4} \frac{\tan(x)+1}{\cos(x)^2} dx$.

Q45

Evaluate the integral

$$\int_0^\pi \cos^4 x \sin x dx$$

Q46 Find the surface area of the solid generated when the region between the graphs of the functions $y = x^2$ and y = 4 over the interval [-2, 2] is revolved about the y-axis.

Q212 Find the volume of the solid generated when the region between the graphs of the functions $y = \frac{2}{3}x$, x = 1 and x = 3 and the x-axis is revolved about the x-axis.

Q208 Find the surface area S of a right circular cone of height h and radius r.

Q250 Compute $\int \frac{dx}{x^3 - x}$.

Q251 Compute $\int_0^1 \frac{dx}{e^x + e^{-x}} dx$

- (A) A B C + D (C) A B C + D (B) A B + C + D (D) None

Q252 The region bounded by $y = \sqrt{x}$, y = 1 and x = 0 is rotated about the y-axis to form a solid. Write an in integral that uses disk method to compute the volume.

(A) e

(B) e + 1

Q253 The region bounded by $y = \sqrt{x}$, y = 1 and x = 0 is rotated about the y-axis to form a solid. Write an in integral that uses shell method to compute the volume.

(A) e

Q254 The region bounded by $y = \sqrt{x}$, y = 1 and x = 0 is rotated about the y-axis to form a solid. Write an in integral that uses disk or shell method to compute the volume.

- (A) e
 (B) e

Q255 The improper integral $\int_{0}^{\infty} \frac{dx}{x \ln x} dx$

(A) diverges

(C) converges and equals $\sqrt{2}$

- (A) diverges (C) 1 (B) -12 (D) A B C + D
- (E) None

- (B) converges and equals 2
- (D) A-B-C+D
- Q256 If we want to decompose $\frac{x^2+4x+5}{(x+1)(x^2+2x+5)^2}$ into partial fractions, we should look for an expression of the form:
- Q257 Let f be differentiable function. Which of the expression is the same as the integral $\int \frac{1}{x^2} f(x) dx$
- (A) $\frac{-f(x)}{x}$ + (B) a (D) a (E) None

(E) None

- Q258 If a > 0 is a constant, then $\int_0^2 x^{a-1} e^{x^a} dx$ equals:
- (A) $\frac{1}{a}(e^{2^a} 1)$ (C) a (E) None (B) a

- Q259 The integral $\int \frac{\cos x}{1 + \sin^2 x} dx$ equals:

- Which of the following gives the value of the integral

- Q261 Which of the following gives the value of the integral $\int_0^1 \frac{dx}{x-1} dx$

- Q262 Which of the following gives the value of the area under the curve $y = \frac{1}{x^2+1}$ in the first quadrant?
- Q263 To which of the following numbers does the series $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots$ converge?

- (A) diverges (C) 1 (E) None (B) -12 (D) A-B-C+D
- Q264 Evaluate the series $\sum_{n=1}^{\infty} 2^{4-3n}$ (A) 128/7 (C) A-B-C+D (E) None (B) A-B-C+D (D) A-B-C+D

- Q265 Consider the series $\sum_{n=0}^{\infty} \frac{1}{2^n + 5n 2}$. Using the comparison test with the series leads to the following result. There is only one correct answer.
- (A) The series converges
- conlusive
- (D) The test is not applicable

- (B) The test is in-
- (C) The test diverges
- (E) None
- Q265 Which of the following integrals converge?
- 1. $\int_{-}^{} 1^{1} \frac{1}{1+x^{2}} dx$
- 2. $\int_1^\infty e^{-x} dx$
- 3. $\int_0^1 \frac{1}{x^{3/2}} dx$

conclusive.

(A) only 1

(E) None

(B) only 2

(C) 1 and 2(D) 2 and 3

Q266 Let R be region enclosed by the curves $x^2 + x^2 = 4$, $y = \sqrt{3}x$, and the x-axis. Rotate R about the y-axis and find the resulting volume.

- (A) $\frac{8\pi}{3}\sqrt{3}$ (C) A-B+C+D (E) None (B) A-B-C+D

Q267 Let R be the region in the first quadrant that is under the curve $y = \sin x$ on the interval $[0, \pi]$. Find the volume of the solid obtained by rotating R about the y-axis.

(A) $2\pi^2$

- (C) $2\sqrt{2} 2$ (D) $\sqrt{2} + 1$

(B) $\sqrt{2}$

Q268 What conclusion can we draw about the convergence of if we use the limit comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{n}$.

- (A) The series converges absolutely.
- (B) The series diverges.
 (C) The test is in-

Q269 Which of the following integrals represents the arclength of

$$y = 3sin(x^2)$$

over [0, 2]?

- (A) $2\pi \int_0^2 \sqrt{1 + \sin x^2} dx$ (C) $2\pi \int_0^2 \sqrt{1 + 36x^2 \sin^2(x^2)} dx$ (B) $2\pi \int_0^2 \sqrt{1 + \cos x^2} dx$ (D) None

Q270 Find the length of the segment of the line y = x between the points (a, a) and (b, b).

Word of the Week: "Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country." (David Hilbert)