Instructions: Keep all devices capable of communication turned off and out of sight.
Q1 Let $c^{2} z^{2}=a^{2} x^{2}+b^{2} y^{2}$. Then find the value of $\frac{1}{a^{2}} \frac{\partial^{2} z}{\partial x^{2}}+\frac{1}{b^{2}} \frac{\partial^{2} z}{\partial y^{2}}$ Q2 If $f(x, y)=\sqrt{x^{2}-y^{2}} \sin ^{-1}\left(\frac{y}{x}\right)$ then find the value of $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}$. Q3 If $u=\ln \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\frac{3}{x+y+z}$ Q4 Find an equation of the set of all points equidistant from the points $A=(1,5,3)$ and $b=(6,2,-2)$. Describe the set.
Q5 Find a vector that has the same direction as $(-2,4,2)$ but has length 6.
Q6 Find parametric equations for the line through $A=(5,1,0)$ that is perpendicular to the plane $2 x-y+z=1$
Q7 Find and sketch the domain of

$$
f(x, y)=\sqrt{x^{2}+y^{2}-1}+\ln \left(4-x^{2}-y^{2}\right)
$$

Q8 Find equation of the tangent plane to the surface $z=e^{x^{2}-y^{2}}$ at the point $(1,-1,1)$.
Q9 Find z_{x} if $x y z=\cos (x+y+z)$
Q10 Suppose that $\nabla f=\left\langle 2 x y+3 x^{2} y^{2}, x^{2}+2 x^{3} y\right\rangle$ and $f(1,2)=3$. What is the tangent plane to the surface $z=f(x, y)$ at the point $(1,2,3)$?
Q11 Find Maclaurin series of the function: $f(x)=\frac{\ln \left(1+x^{2}\right)}{x}$.
Q12 Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n^{3} x^{n}}{3^{n}}$
Q13 Find a parametric equation of the line through the points $(1,2,-8),(9,7,1)$
Q14 Let $f(x, y)=x^{2}-x y+y$. Find the equation of the tangent plane to the graph at the point $(-2,1,7)$.
Q15 Find the gradient of the function $f(x, y)=\sqrt{x^{2}+y^{2}+z^{2}}$,
Q16 Find the equation of the line through $(1,0,6)$ an orthogonal to the plane $x+3 y+z=5$.

Q17 Find the equation of the tangent plane to the graph of $f(x, y)=$ $x^{2}-x y+y$ at the point $(-2,1,7)$.
Q18 Find the equation of the tangent plane to the graph of $f(x, y)=$ $x^{2} /(y+1)$ at the point $(6,-3,-18)$.
Q19 Find the gradient of the function $r=\sqrt{x^{2}+y^{2}+z^{2}}$,
Q20 Find the gradient of the function $f(x, y, z)=\sin r=$ $\sin \sqrt{x^{2}+y^{2}+z^{2}}$.
Q21 Find the equation of the plane that goes through the points $p_{1}=(1,2,3), \quad p_{2}=(1,3,2), \quad p_{3}=(-1,3,10)$
Q22 Find a power series representation for the function $f(x)=\frac{x}{x-3}$ and determine the interval of convergence.
Q23 Find a power series representation for the function $f(x)=\ln (1+$ $x)$ and determine the radius of convergence.

$$
\text { Q24 Let } f(x, y, z)=x^{2} \ln (x-y+z)
$$

1. Evaluate $f(3,6,4)$
2. Find the domain of f
3. Find the range of f

Q25 Find the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{4}+y^{2}}$ if it exists, or show that the limit does not exist.
Q26 Find the limit, $\lim _{(x, y, z) \rightarrow(2,3,0)}\left[x e^{z}+\ln (2 x-y)\right]$ if it exists, or show that the limit does not exist.
Q27 Find the partial derivatives of the function $f(x, y)=x^{y}$
Q28 Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$

1. $z=f(x) g(y)$
2. $z=f(x y)$
3. $z=f\left(\frac{x}{y}\right)$

Q29 Find the domain and range of the function $f(x, y)=\sqrt{x-y}$.
Q30 Find and sketch the domain of the function $f(x, y)=$ $\sqrt{4-2 x^{2}-y^{2}}$.
Q30 Determine the largest set on which the function is continuous.
$f(x, y)= \begin{cases}\frac{x^{2} y^{3}}{2 x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 1 & \text { if }(x, y)=(0,0)\end{cases}$
Q31 Find an equation of the tangent plane to the given surface $z=$ $\sin (x+y)$ at the point $(1,-1,0)$
Q32 Find the directional derivative of the function $g(x, y, z)=z^{3}-x^{2} y$ at the given point $(1,6,2)$ in the direction of the vector $v=3 i+4 j+12 k$.
Q33 Find the limit, $\lim _{(x, y) \rightarrow(1,1)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$ if it exists, or show that the limit does not exist.
Q34 Find the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(2 x^{2}+3 y^{2}\right)}{2 x^{2}+3 y^{2}}$ if it exists, or show that the limit does not exist.
Q35 Find the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2}-3 y^{2}}{2 x^{2}+3 y^{2}}$ if it exists, or show that the limit does not exist.
Q36 Let $f(x, y)=x \sin y$.
a. Compute all first and second order partial derivatives of f.
b. Find and classify the critical points of f.
c. Find the absolute maximum and minimum values of f in the rectangular region $-1 \leq x \leq 1,-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

Q37 What do the level curves of the function $f(x, y)=3 x^{2}+4 y^{2}$ look like? Are they circles, ellipses, diamonds, parabolas, or waves?
Q38 Could there be a function $f(x, y)$ with $\nabla f=\left\langle 2 x^{2}+3 y, 3+\sin x\right\rangle$? Why or why not?
Q39 Suppose that $\nabla f=\left\langle 2 x y+3 x^{2} y^{2}, x^{2}+2 x^{3} y\right\rangle$ and $f(1,2)=3$. What is the tangent plane to the surface $z=f(x, y)$ at the point $(1,2,3)$?

Q40 Find an equation for the plane containing the points $(3,-1,2),(2,0,5)$, and $(1,-2,4)$. Express your answer in standard form. Q41 Let $f(x, y)=e^{3 x+y}$, and suppose that $x=s^{2}+t^{2}$ and $y=2+t$. Find $\partial f / \partial s$ and $\partial f / \partial t$ by substitution and by means of the chain rule. Verify that the results are the same for the two methods.
Q42
Q43 Find the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}$ if it exists, or show that the limit does not exist.
Q44 Find the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y^{2}}{x^{2}+8 y^{4}}$ if it exists, or show that the limit does not exist.
Q45 Find the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y-2 x^{2}-2 y^{2}}{x^{2}+y^{2}}$
Q46 Find an equation of tangent plane to the graph of paraboloid $z=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+4$ at the point $(1,-1,5)$.
Q47 Find the level surface of $F(x, y, z)=x^{2}+y^{2}+z^{2}$ passing through $(1,1,1)$. Graph the gradient at the point.
Q48 Find the level surface of $F(x, y)=-x^{2}+y^{2}$ passing through $(2,3)$ Graph the gradient at the point.
Q49 Calculate the iterated integral
$\int_{0}^{1} \int_{0}^{1} \frac{x y}{\sqrt{x^{2}+y^{2}+1}} d y d x$
Q50 Evaluate the integral by reversing the order of integration.
$\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) d y d x$
Q51 Find the volume of the solid bounded by the cylinder $y^{2}+z^{2}=4$ and the planes $x=2 y, x=0, z=0$ in the first octant.
Q52 Evaluate the double integral $\iint_{D} x y d A$, where D is the firstquadrant part of the disk with center $(0,0)$ and radius 1
Q53 Find the volume of the solid lying under the elliptic paraboloid $\frac{x^{2}}{4}+\frac{y^{2}}{9}+z=1$ and above the square $R=[-1,1] \times[-2,2]$.

Q54 Calculate the double integral
$\iint_{R} x \sin (x+y) d A, \quad$ where $R=\left[0, \frac{\pi}{6}\right] \times\left[0, \frac{\pi}{3}\right]$
Q55 Evaluate $\int_{0}^{1} \int_{0}^{y^{2}} x^{2} y d x d y$ and sketch the region of integration in \mathbb{R}^{2} indicated by the limits of integration.
Q56 Evaluate $\int_{0}^{\pi} \int_{y}^{\pi} \frac{\sin x}{x} d x d y$.
Q57 Let f be differentiable function and $z=e^{a x+b y} f(a x-b y)$. Then find $b \frac{\partial z}{\partial x}+a \frac{\partial z}{\partial y}$
Q58 Divide 30 into three parts such that the continued product of the first, square of the second and the cube of the third may be maximum. Q59
Evaluate

$$
\iint_{\Omega}(x+y)^{2} d x d y
$$

where Ω is the parallelogram bounded by the lines

$$
x+y=0, x+y=1,2 x-y=0,2 x-y=3 .
$$

Q60

Evaluate

$$
\iint_{\Omega} x y d x d y
$$

where Ω is the first-quadrant region bounded by the curves

$$
x^{2}+y^{2}=4, x^{2}+y^{2}=9, x^{2}-y^{2}=1, x^{2}-y^{2}=4
$$

Q61
Let

$$
S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \geq 1\right\}
$$

Evaluate

$$
\iiint_{S} \frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} d x d y d z
$$

Q62 Evaluate $\iint_{\mathbb{R}_{\infty}^{2}} e^{-\left(x^{2}+y^{2}\right)} d A$
Q63 Show that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$
Q63 Show that $\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x=\sqrt{2} \sqrt{\pi}$
Q64 Find an equation of tangent plane to the graph of $f(x, y)=$ $\arctan \left(x y^{2}\right)$ at the point $(1,1, \pi / 4)$.
Q65 Compute $\iiint_{E} \sqrt{y^{2}+z^{2}} d V$ where E is the region bounded by the paraboloid $x=y^{2}+z^{2}$ and the plane $x=1$.
Q66 Compute $\iint_{S} f d A$ where S is the parallelogram spanned by $\langle 3,2\rangle$ and $\langle 1,5\rangle$ and $f(x, y)=x y$.
Q67
(i) Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that maps unit circle $x^{2}+y^{2}=1$ into ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(ii) Use the above linear transformation and find the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Q68 By changing the variables so that the region R is transformed into a rectangle, evaluate the integral

$$
\iint_{R}\left(5\left(y-x^{2}\right)^{4}+6 x y\right)\left(y+2 x^{2}\right) d x d y
$$

where R is the region in the first quadrant bounded by the curves

$$
y=x^{2}, \quad y=x^{2}+1, \quad x y=1, \quad x y=2 .
$$

Q69 Evaluate the integral $\int_{0}^{2} \int_{2 y}^{4} \exp \left(-x^{2}\right) d x d y$.
Q70 T is the triangle in the $x-y$ plane with vertices $(0,0),(0,3),(1,3)$.
Evaluate the integral $\iint_{T} 6 \exp \left(-y^{2}\right) d x d y$.
Q71 Find the volume of the given solid. Below $z=1-x^{2}$ and over the region $0 \leq x \leq 1,0 \leq y \leq x$.

Q72 Evaluate $\iint_{R} e^{x^{2}+y^{2}} d A$ where $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$.
Q73 Evaluate $\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x$.
Q74 Evaluate the iterated integral $\int_{0}^{2} \int_{0}^{y} 2 x y d x d y$.
Q75 Evaluate the integral $\int_{0}^{8} \int_{x / 2}^{4} e^{y^{2}} d y d x$ by reversing the order of integration.
Q76 Solve the system $u=x+5 y$ and $v=x+3 y$ for x and y and compute the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.
Q77 Evaluate the integral $\iint_{R} 4(x+3 y)(x+5 y) d A$, where R is bounded by the lines $x+5 y=-3, x+3 y=0, x+5 y=0, x+3 y=4$. Q78 Verify that Green's Theorem is true for the line integral

$$
\oint_{C}-y d x+x d y
$$

where C is the circle with center at the origin and radius 4 .
Q79 Verify that Green's Theorem is true for the line integral

$$
\oint_{C} x^{2} y d x+x y^{2} d y
$$

where C is the triangle with vertices $(0,0),(1,0),(1,3)$. Sketch the triangle.
Q80 Evaluate

$$
\oint_{C}(1+\tan x) d x+\left(x^{2}+e^{y}\right) d y
$$

Where C is the positively oriented boundary of the region R enclosed by the curves $y=\sqrt{x}, x=1$, and $y=0$. Be sure to sketch C.
Q81 Evaluate

$$
\oint_{C} x^{2} y d x-x y^{2} d y
$$

where C is the circle $x^{2}+y^{2}=4$ with counterclockwise orientation. Q82 Evaluate the line integral

$$
\int_{C}\left(x^{2}-y^{2}\right) d x+2 x y d y
$$

along the curve C whose parametric equations are

$$
x=t^{2} ; \quad y=t^{3} ; \quad 0 \leq t \leq \frac{3}{2}
$$

Q83 Evaluate the line integral

$$
\oint_{C}\left(x^{3}+2 y\right) d x+\left(4 x-3 y^{2}\right) d y
$$

where C is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Q84 Evaluate

$$
\oint_{C}(1+\tan x) d x+\left(x^{2}+e^{y}\right) d y
$$

Where C is the positively oriented boundary of the region R enclosed by the curves $y=\sqrt{x}, x=1$, and $y=0$. Be sure to sketch C.

Q85
Q86
Q87
Q88
Q89
Q90

