Instructions: Keep all devices capable of communication turned off and out of sight. The exam lasts for 1 hour and 15 min. Multiple Choice Questions (65 points)

Q1 Evaluate $\int_{0}^{2} \int_{1}^{x} x^{2} y d y d x$
(A) $28 / 15$
(C) $1 / 24$
(E) None
(B) 3
(D) $1 / 13$

Q2 Evaluate $\int_{0}^{e} \int_{0}^{e} \int_{0}^{e} \frac{1}{x y z} d x d y d z$
(A) π
(C) e
(E) None
(B) $\ln 2+1$
(D) $\sqrt{2} e$

Q3 Evaluate the line integral

$$
\oint_{C}\left(x^{2}+y^{2}\right) d x+2 x y d y
$$

where C is the square bounded by the lines $x=0, x=2, y=0, y=2$.
(A) -1
(C) $1 / 2$
(E) None
(B) 0
(D) 13

Q4 Find the directional derivative of the function $g(x, y)=(x+3 y)^{2}$ at the given point $(1,-1)$ in the direction of the vector $\vec{v}=\frac{1}{\sqrt{2}}(1,-1)$.
(A) $\sqrt{2}+2$
(C) $4 \sqrt{2}$
(E) None
(B) $\sqrt{3}-1$
(D) 5

Q5 Let $z=4+x^{3}+y^{3}-3 x y$. Which of the following statements are true?

1. $(1,1)$ is a local maximum,
2. $(0,0)$ is a saddle point
3. $(2,4)$ is a local minimum.
(A) Only 1
(C) Only 3
(E) None
(B) Only 2
(D) 1 and 3

Q6 Find $\lim _{t \rightarrow 0}\left[\frac{\sin t}{t} \vec{i}+t \vec{j}+(t-1)^{4} \vec{k}\right]$
(A) \vec{i}
(C) $\vec{i}+\vec{j}+\vec{k}$
(E) None
(B) $\vec{i}+\vec{j}$
(D) $\vec{i}-\vec{k}$

Q7 What is the length of the arc described $r(t)=\left(3 t^{2} \vec{i}+2 t^{3} \vec{j}+\vec{k}\right)$
(A) $4 \sqrt{2}$
(C) $4 \sqrt{2}-2$
(E) None
(B) $4 \sqrt{2}+1$
(D) $\sqrt{2}+4$

Q8 Compute $\int_{-1}^{1} \sqrt{1-x^{2}} d x$
(A) $\frac{\pi}{2}$
(C) π^{2}
(E) None
(B) 2π
(D) $2 \pi^{2}$

Q9 Evaluate the series $\sum_{n=1}^{\infty} 2^{4-3 n}$
(A) $125 / 9$
(C) $63 / 7$
(E) None
(B) $161 / 5$
(D) $128 / 7$

Q10 Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n^{3} x^{n}}{3^{n}}$
(A) 1
(C) 3
(E) None
(D) 4

Q11 The value of $\lim _{(x, y, z) \rightarrow(2,3,0)}\left[x e^{z}+\ln (2 x-y)\right]$
(A) 2
(B) $2 \sqrt{2}$
(C) 3
(D) $D N E$
(E) None

Q12 Compute $\int \frac{d x}{x^{2}-x}$.
(A) $\ln \left|\frac{x-1}{x}\right|+C$
(C) $\frac{1}{2} \ln \left|x^{2}+1\right|+C$
(B) $2 \ln |x|+\frac{1}{3} \ln \left|x^{2}-x\right|+C$
(D) None

Q13 Compute $\int_{0}^{1} x e^{x} d x$.
(A) -1
(C) 1
(E) None
(B) 0
(D) 2

Classical Problems. Show all your work. No work=No credit!
Q1(15pts) Evaluate $\iint_{S} x d S$ where S is the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$.

Solution:

Q2(15pts) Consider the vector field $F=x \vec{i}+y \vec{j}+z \vec{k}$. Let S be the cylinder surface that lies between the planes $z=0$ and $z=2$.

Solution:

$E=[0,1]^{3}=[0,1] \times[0,1] \times[0,1]$ and
$F=\left(x+\left(y^{2}+1\right)^{y}, y+\left(z^{2}+1\right)^{x}, z+\left(x^{2}+1\right)^{x}\right)$.
Solution:

