Instructions: Keep all devices capable of communication turned off and out of sight.Multiple Choice Questions (85 points)

Q1 Let $A=\{a, b, c, d\}$ and $B=\{1,2,3\}$ be finite sets. How many functions are there from A to B ?
(A) 64
(C) 81
(E) None
(B) 32
(D) 12

Q7 $\lim _{x \rightarrow 1} \frac{\ln x}{x}$ is
(A) 0
(C) e
(B) 1
(D) $-e$

Q8
(A) -1 $\lim _{x \rightarrow 0} \frac{\tan x}{x}$ is
(C) π
(B) $-\pi / 2$
(D) 1

Q9 $\lim _{x \rightarrow 0} \frac{\sin x}{\sqrt{x}}$ is
(A) -1
(C) 1
(B) 0
(D) π
(E) None
(A) $c=1$
(C) $c=2$
(B) $c=-\frac{1}{2}$
(D) $c=3$

Q10 The Intermediate Value Theorem states that given a continuous function f defined on the closed interval $[a, b]$ for which 0 is between $f(a)$ and $f(b)$, there exists a point c between a and b such that
(A) $f(c)=0$
(C) $f(a)=f(b)$
(B) $c=a-b$
(D) $f(0)=c$

Q11

Q4 Suppose $f(x)=\frac{1}{x^{2}-5}$. What is the largest value of A such that $f(x)$ is defined on the interval $[-10, A)$?
(A) $-\sqrt{5}$
(C) -2
(E) None
(B) $2 \sqrt{6}$
(D) $\sqrt{5}$

Q5 If $f(x)=|x-1|$ then find $\lim _{x \rightarrow 1} \frac{f(1+h)-f(1)}{h}$
(A) 4
(C) 0
(E) DNE
(B) 1
(D) 2

Q6 The graph of a function f is reflected across the x-axis and then shifted up 2 units. Which of the following describes this transformation on f ?
(A) $-f(x)$
(C) $-f(x)+2$
(E) None

(A) $f(x)=\sin x$
(C) $f(x)=\sin (\pi x)$
(B) $f(x)=2 \sin \left(\frac{\pi}{2} x\right)$
(D) $f(x)=2 \sin (\pi x)$

Q12 Suppose that f is a function that is defined for all real numbers. Which of the following conditions assures that f has an inverse function.
(A) The function f is periodic.
(C) The function is strictly in-
(B) The graph of f is symmetric with respect to the y-axis. creasing function.
(D) The function is continuous.

Q13 Compute $\lim _{x \rightarrow 0} \frac{\tan x-x}{\sin x}$.
(A) 0
(C) $4 / 7$
(E) None
(B) 1
(D) $5 / 9$
Q14 Let $\frac{1}{5} x+\frac{5}{x}+2 \leq$
$f(x) \leq x^{2}-10 x+29$.
(A) -1
(C) 4
(E) 11
(B) 0
(D) 5

Q15 An object is moving along a straight line. It is position after $t \geq 0$ is given by $s(t)=t^{2}+5 t$ meters. Find the average velocity of the object for the time interval $2 \leq t \leq 4$.
(A) -1
(C) 4
(E) 11
(B) 0
(D) 5

Q16 The slope of the line tangent to the graph of $y=x^{3}-x^{2}+1$ at $x=2$ is
(A) 8
(B) 9
(C) 11
(E) None
Q17 $\lim _{x \rightarrow \infty} \frac{5+7^{x}}{2+9^{x}}$
(D) 12
(E) None
(A) ∞
(C) $5 / 2$
(B) 0
(D) $7 / 9$

True/False questions(10 pts). No justifications are needed.
Q1 If $f(x)$ is continuous on $[a, b]$ and if $f(b)=f(a)$ then $f(x)$ must have a zero in $[a, b]$.

$$
\mathrm{T}
$$

Q2 If $f^{\prime}(x)=g^{\prime}(x)$, then $f(x)=g(x)$.

$$
\mathrm{T}
$$

\square
Q3 If $\lim _{x \rightarrow \infty} f(x)$ exists, then $f(x)$ must have a horizontal asymptote.

Q4 Speed is the rate of change of acceleration over time.
$\mathrm{T} \quad \mathrm{F}$
Q5 It is impossible for a function to have both a horizontal asymptote and a vertical asymptote.

T
F
Q6 If $f(x)$ is a continuous function then f is differentiable.
T
F
Q7 The derivative of $\tan (x)$ is $\sec (x) \tan (x)$.
T

Q8 A circle can be the graph of a function. T

F
Q9 The equation $x^{4}+x-3=0$ has a solution in [1, 2]. T

F
Q10 If $f(x)=7+x+e^{x}$. Then $f^{-1}(8)=0$. T

F

Fill in the Blank questions(10 pts).

Q1 The quantity $|y-x|$ is called the \qquad between
\qquad and \qquad _.

Q2 The function $f: x \rightarrow 3-x$ \qquad 2 onto 1.

Q3 A function associates with each member of its precisely one member of its \qquad

Q4 A point (x, y) lies on the x-axis if and only if \qquad

Q5 A point (x, y) lies in the first quadrant if and only if both x and y are \qquad -

