Name:	Mathematical Analysis I/ Final Exam			Fall 2015	
Instructions: Keep all devices capable of communout of sight. The exam lasts for 1 hour and 45 m YOUR ANSWERS WITH AN X, not a circle!	Q7 Let $f(x) = x \ln x$. Find the intervals where $f(x)$ is concave downward.				
		(A) $f(x)$ is not	(B) $(0,1)$	(D) $(0,\infty)$	
Q1 Let $F(x) = \int_{1}^{x} \sqrt{2t^{2} - 3t + 1}$. Find $F'(3)$. (A) 10 (B) 15 (C) -1 (D) 0		concave down- ward any-	(C) $(0, e)$	(E) None	
(A) 10 (C) -1	(E) None	where.			
(B) 15 (D) 0			unction $h(x)$ has derivativ		
Q2 What is the average of the function $h(t) = t^3 + 1$ on the interval		the x value in the interval $[-1,3]$ where $h(x)$ takes its minimum.			
[1,4] ?		(A) 0	(C) 2 (D) 4	(E) None	
(A) -5 (C) $267/12$	(E) None	(B) -1	(D) 4		
(B) 260/9 (D) 211/13		Q9 Evaluate the limit $\lim_{n \to \infty} \frac{2+4+6\cdots+2n}{n^2}$ (A) 2 (C) 1.5 (E) None			
Q3 Given that the area of the ellipse $4x^2 + y^2 =$	$= 4$ is 2π , evaluate the	(A) 2	(C) 1.5	(E) None	
		(B) 3	(D) 1		
integral $\int_{0}^{1} \sqrt{4 - 4x^{2}} dx$ (A) $-\pi$ (B) $\pi/2$ (C) π (D) 1	(E) None	Q10 Evaluate the integral $\int_{-4}^{8} x dx$			
		(A) 24	-	(E) None	
		(B) 38	(C) 40(D) 48		
Q4 Suppose that $f = g \circ h + h \circ g$, $g(0) = 1$	Q11 Given the function $f(x) = x^2$, which value of c satisfies the con-				
g'(2) = 5, h'(0) = 6, h'(1) = 7 then $f'(0) =$	(E) None	clusion of the Mean Value Theorem on the interval $[-4, 5]$?			
(A) 51 (C) 61	(E) None	(A) $1/2$		(E) None	
(B) 55 (D) 20 $e^x - 1 - x$		(B) 2	(C) 3 (D) 4		
Q5 Evaluate the limit $\lim_{x \to 0} \frac{e^x - 1 - x}{2x^2}$		(D) 2			
(A) -2 (C) 0	(E) None				
(B) -1 (D) $1/4$. /	$\stackrel{y}{\uparrow}$	
Q6 Find the minimum value of $f(x) = x^3 - 3x + 3$ on the interval $[-2, 4]$.		Q12 A rectangle in the (x, y) -plane has its base on the x-axis and its upper two corners on the curve $y = -x^2 + 3$. Find the			
(A) -5 (C) 1	(E) None	largest possible area for such a rectangle.			
(B) -1 (D) 3				$x \rightarrow x$	
		(A) 4	(C) 2.5	(E) None	
		(B) 3	(D) 2		

	Mathematical Analysis I/ Final Exam				
Q13 Consider the function $f(x) = \frac{x^2 + 5x + 6}{x^2 - 4}$. Which	of the following	(A) 1	(C) 2	(E) None	
statements describes the asymptotes of $f(x)$? (VA:Vertical asymptote,		(B) 1.5	(D) 5/2		
HA: Horizontal asymptote)	Q19 Find the limit $\lim_{x\to 0} (1+3x)^{\frac{1}{x}}$				
(A) VA: $x = \pm 2$, HA: $y = x$. (D)	VA: $x = 2$,	$(A) e^{3}$ $(B) 3e$	(C) e^{-2}	(E) None	
(A) VA: $x = \pm 2$, HA: $y = x$. (D) HA: $y = 1$. (C) VA: $x = \pm 2$, HA: $y = x$. (E)	HA: y = 1.	(B) $3e$	(D) 2.71		
Q14 Find the linear approximation $L(x)$ to $f(x) = \cos x$	Q20 The graph of the function f is shown $y = f(x)$				
(A) $x + \frac{\pi}{3}$ (B) $x + \frac{\pi}{2}$ (C) $-x + \frac{\pi}{2}$ (E) (D) $x + \frac{\pi}{3}$	None	right . Find the integr		$\begin{array}{c} y \\ 7 \end{array} \qquad \qquad$	
(B) $x + \frac{\pi}{2}$ (D) $x + \frac{\pi}{3}$		c6 c7			
Q15 Suppose $f(t)$ is continuous on [1,7] with $f(1) =$	$\int_{1}^{6} f(x)dx + \int_{1}^{7} f^{-1}(x)dx$				
Find $\frac{d}{dt} \left[\int_{-t}^{t} f(t) dt \right]$		01 01		1	
(A) $2^{au \cup J_1}$ (C) 48 (E)	None	(A) 38 (C) 4 (B) 39 (D) 4	42 None	$\xrightarrow{1} \qquad \xrightarrow{1} \qquad \xrightarrow{6} x$	
Find $\frac{d}{dt} \left[\int_{1}^{7} f(t) dt \right]$ (A) 2 (B) 24 (C) 48 (E)					
		Fill in	$ons(10 { m pts})$		
Q16 Let $f(x)$ be an even function contin- uous on its domain $(-\infty, \infty)$. The figure below shows the areas of regions bounded by the graph of $f(x)$ and the x - axis for x in the interval [0, 6]. Find $\int_{-6}^{6} 2f(x)dx$.	$y = f(x)$ Area=15 $3 4 5 6 x$ $8 \longrightarrow x$	and Q2 A function	x - x is called the associates with precisely one member	each member of its	
(A) -12 (C) -6 (E)	None	Q3 Suppose that	f is	on $[a, b]$ and f is	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			on (a, b) . Then	there exists a constant	
Q17 Find all possible functions with the given derivation	in (a, b) such that f'	$f(c) = \frac{f(b) - f(a)}{b - a}.$			
(A) $9x^{9/5} + C$ (C) $5x^{9/4} + C$ (E)	None $\sqrt[5]{x}$				
Q17Find all possible functions with the given derivation(A) $9x^{9/5} + C$ (C) $5x^{9/4} + C$ (E)(B) $5x^{9/5} + C$ (D) $6x^{9/5} + C$		Q4 The equation of	f the	to the curve -f(a) = f'(a)(x-a)	
Q18 $f: (1.5, 9) \to \mathbb{R}, f(x^2 - 2) = 3x^2 - 2x + 2$. Then	y = f(x) at the point	x = a is given by y	-J(a) = J(a)(x-a)		
f = (1.0, 0) + 10, f(x - 2) = 0x - 2x + 2. Then	·	Q5 $F(x)$ is an		_ of $f(x)$ if $F'(x) = f(x)$.	

Wednesday $6^{\rm th}$ January, 2016 12:06

Name:

Fall 2015

True/False Questions(10 pts) . No justifications are needed.

Q1 If f(x) is continuous on [a, b] and if f(b) = f(a) then f(x) must have a zero in [a, b]. T

Q2 If f is constant 1 then $\int_{a}^{b} f(x)dx$ is the length of the interval [a, b]. T Q3 If f'(x) = g'(x), then f(x) = g(x). T F

Q4 The fundamental theorem of calculus implies that $\int_0^3 f''(x)dx = f'(3) - f(0)$. T

Q5 If f(x) is smaller than g(x) for all x, then $\int_0^1 f(x) - g(x)dx$ is negative.

Q6 If f is discontinuous at 0, then $\int_{-1}^{1} f(x)dx$ is infinite. T Q7 If x(t) + y(t) = 10 is constant and x'(t) = 3 then y'(t) = -3T Q8 If a differentiable function f has a critical point at 1, then the function $F(x) = \int_{0}^{x} f(t)dt$ has an inflection point at 1.

Q9 The acceleration is the anti-derivative of the velocity. T
F
Q10 If f is concave up on [0, 1] and concave down on [1, 2] then 1 is an inflection points. T
F

Student ID Number:

Bonus Question(15 pts).

Compute the definite integral $\int_0^2 (x + x^2) dx$ as the limit of a **right Riemann sum**.

(a) $\Delta x =$

=

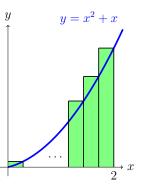
=

=

_

=

(b) Right endpoint of the k-th subinterval, x_k :


(c) Height of the k-th rectangle, $f(x_k)$

(d) Find the area of the k-th rectangle, $A_k = f(x_k)\Delta x$

(e) Sum of the areas of the n rectangles, $\sum_{k=1}^{n} A_k$

(f) Find the limit, $\lim_{n\to\infty} \sum_{k=1}^n A_k$

