Instructions: Keep all devices capable of communication turned off and out of sight.The exam lasts for 1 hour and 15 min .

Q1 Find the sum of the series: $1+5+\frac{1}{2}+\frac{5}{3}+\frac{1}{4}+\frac{5}{9}+\frac{1}{8}+\frac{5}{27}+\cdots$
(A) diverges
(C) 15
(E) None
(B) $19 / 2$
(D) $43 / 2$

Q2 If $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$, then $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$ is equal to
(A) $\pi^{2} / 12$
(C) $\pi^{2} / 8$
(E) None
(B) $\pi^{2} / 7$
(D) $\pi^{2} / 36$

Q3 Consider the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$. Using the comparison test with the series leads to the following result. There is only one correct answer.
(A) The series converges
(B) The test is in-
conclusive
(C) The test diverges
(D) The test is not
applicable
(E) None

Q4 The length of the curve determined by $x=2 t^{3}$ and $y=t^{3}$ from $t=0$ to $t=1$ is
(A) $5 / 7$
(C) $\sqrt{5}$
(E) None
(B) $\sqrt{5} / 2$
(D) 3

Q5 Which of the following integrals represents the arclength of $y=\cos \left(x^{2}\right)$ over $[0,2]$ ?
(A) $2 \pi \int_{0}^{2} \sqrt{1+\sin x^{2}} d x$
(D) $\int_{0}^{2} \sqrt{1+4 x^{2} \sin ^{2}\left(x^{2}\right)} d x$
(B) $\int_{0}^{2} \sqrt{1+4 x^{2} \cos x^{2}} d x$
(E) None

Q6 The length of the curve determined by : $x=\cos ^{3} t, y=\sin ^{3} t$ from $t=0$ to $t=1$ is
(A) 12
(C) $\sqrt{5}$
(E) None
(B) 6
(D) 3

Q7 Compute $\int \frac{d x}{x^{3}+x}$.
(A) $\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|+C$
(C) $\frac{1}{2} \ln \left|x^{2}+1\right|+C$
(B) $2 \ln |x|+\frac{1}{3} \ln \left|x^{2}+1\right|+C$
(D) None

Q8 Compute $\int_{1}^{3} \frac{x^{3}}{x+1} d x$.
(A) $\frac{21}{3}-\ln 2$
(C) $\frac{22}{3}-\ln 2$
(E) None
(B) $\frac{20}{3}-\ln 3$
(D) $\frac{20}{5}-\ln 3$

Q9 Compute $\int \frac{x^{2}}{x^{2}+1} d x$.
(A) $x+\arctan x+c$
(C) $x-\arctan x+c$
(B) $x^{2}-\arctan x+c$
(D) None

Q10 Compute $\int_{-a}^{a} \sqrt{a^{2}-x^{2}} d x$
(A) $\frac{\pi a^{2}}{2}$
(C) $\pi^{2}$
(E) None
(B) $a \pi$
(D) $a \pi^{2}$

Q11 The improper integral $\int_{0}^{\infty} x e^{-x} d x$
(A) diverges
(C) converges and equals $\sqrt{2}$
(B) converges and equals 1
(D) None

Q12 Find the volume of the solid generated when the region between the graphs of the functions $y=2 e^{-x}, y$-axis and the $x$-axis is revolved about the $y$-axis.

(A) $\pi$
(C) $4 \pi$
(B) $2 \pi$
(D) None

Q13 Find the surface area $S$ of a right circular cone of height $h$ and radius $r$.
$y$

(A) $2 \pi \sqrt{h^{2}+r^{2}}$
(C) $\sqrt{h^{2}-r^{2}}$
(B) $\sqrt{h^{2} r^{2}}$
(D) None

Q14 The region bounded by $y=2 \sqrt{x}, y=6$ and $x=0$ is rotated about the y -axis to form a solid. Find the volume of the solid.

(A) $V=386 \pi / 7$
(C) $V=486 \pi / 5$
(B) $V=236 \pi / 7$
(D) None same as the integral $\int \frac{1}{x} f(x) d x$
(A) $f(x) \ln x-\int f^{\prime}(x) \ln x d x$
(C) $f(x) \ln x-\int f(x) \ln x d x$
(B) $f(x) \ln x+\int f^{\prime}(x) \ln x d x$
(D) None

Q16 Compute $\int \frac{1}{x \sqrt{1-(\ln x)^{2}}} d x$.
(A) $-\arcsin (\ln x)+c$.
(C) $\arcsin (\ln x)+c$.
(B) $\arcsin (\ln x)+c$.
(D) None

Q17 Compute $\int \frac{1}{64+x^{2}} d x$.
(A) $\frac{1}{6} \tan ^{-1} \frac{x}{8}+c$.
(C) $\frac{1}{4} \tan ^{-1} \frac{x}{4}+c$.
(E) None
(B) $\frac{1}{18} \tan ^{-1} \frac{x}{18}+c$.
(D) $\frac{1}{8} \tan ^{-1} \frac{x}{8}+c$.

Q18 The integral $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1+\sin ^{2} x} d x$ equals:
(A) $\pi / 3$
(C) $3 \pi / 4$
(E) None
(B) $\pi / 2$
(D) $\pi / 4$
(E)

Q19 Find the surface area of the solid generated when the region between the graphs of the functions $y=x^{2}, y=2$ and $y$-axis is revolved about the $y$-axis.


## Solution:

