Instructions: Keep all devices capable of communication turned off and out of sight. The exam lasts for 1 hour and 15 min. Multiple Choice Questions (65 points)

- Q1 Evaluate $\int_{0}^{2} \int_{1}^{x} x^{2}y \, dy \, dx$ (A) 28/15 (C) 1/24
 (B) 3
 Q2 Evaluate $\int_{0}^{e} \int_{0}^{e} \int_{0}^{e} \frac{1}{xyz} \, dx \, dy \, dz$ (A) π (B) $\ln 2 + 1$ (D) $\sqrt{2}e$

(E) None

(E) None

- Q3 Evaluate the line integral

$$\oint_C (x^2 + y^2)dx + 2xydy,$$

where C is the square bounded by the lines x = 0, x = 2, y = 0, y = 2.

- (C) 1/2 (E) None (D) 13

- Q4 Find the directional derivative of the function $g(x,y) = (x+3y)^2$

Q5 Let $z = 4 + x^3 + y^3 - 3xy$. Which of the following statements are true?

- 1. (1,1) is a local maximum,
- **2.** (0,0) is a saddle point
- 3. (2,4) is a local minimum.

(E) None

(B) Only 2

- Q6 Find $\lim_{t \to 0} \left[\frac{\sin t}{t} \overrightarrow{i} + t \overrightarrow{j} + (t-1)^4 \overrightarrow{k} \right]$ (A) \overrightarrow{i} (C) $\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ (B) $\overrightarrow{i} + \overrightarrow{j}$ (D) $\overrightarrow{i} \overrightarrow{k}$
- Q7 What is the length of the arc described $r(t) = (3t^2 \vec{i} + 2t^3 \vec{j} + \vec{k})$ (A) $4\sqrt{2}$ (C) $4\sqrt{2} 2$ (E) None (B) $4\sqrt{2} + 1$ (D) $\sqrt{2} + 4$

(E) None

(E) None

- Q8 Compute $\int_{-1}^{1} \sqrt{1 x^2} dx$ (A) $\frac{\pi}{2}$ (C) π^2 (B) 2π (D) $2\pi^2$
- Q9 Evaluate the series $\sum_{n \neq 0}^{\infty} 2^{4-3n}$ (A) 125/9 $n \neq 0$ 63/7

(E) None

- Q10 Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n^3 x^n}{3^n}$

- Q11 The value of $\lim_{(x,y,z)\to(2,3,0)} [xe^z + \ln(2x y)]$ (A) 2 (C) 3 (D) DNE

- Q12 Compute $\int \frac{dx}{x^2 x}$.

 (A) $\ln |\frac{x-1}{x}| + C$ (B) $2 \ln |x| + \frac{1}{3} \ln |x^2 x| + C$ (C) $\frac{1}{2} \ln |x^2 + 1| + C$ (D) None

- Q13 Compute $\int_0^1 xe^x dx$.
 (A) -1 (C) 1
 (B) 0 (D) 2

- (E) None

True and False

- The surface $x^2 + y^2 + z^2 = 2z$ is a sphere.
 - Τ

- The vector (1, 2, 3) is perpendicular to the plane 2x + 4y + 6z = 4.

- (0,0) is a local minimum of the function $f(x,y) = x^6 + y^6$.

- If $|\overrightarrow{v} \times \overline{w}| = 0$ then $\overrightarrow{v} = 0$ or $\overrightarrow{w} = 0$.
 - Τ

F

- Q_5
- Τ

- Q6 If the series $\sum a_n$ converges, then the sequence a_n converges to 0.

F

- Q7 The $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

F

- Q8 The $\int_{1}^{\infty} \frac{1}{x^2} dx$ is divergent.
- The intersection of the sphere $x^2 + y^2 + z^2 = 169$ with the plane z = 14 is a circle.

- Q10 The vectors $\overrightarrow{v} = (2, 1, 5)$ and $\overrightarrow{w} = (2, 1, -1)$ are perpendicular.
- Student ID Number:

- Fill in the blanks
- from the point $P = (x_1, y_1, z_1)$ to the The _____ ax + by + cz + d = 0 is given by

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

- Q2 If $||\overrightarrow{v}|| = 1$ then \overrightarrow{v} is called _____
- Q3 A point (a, b) in the plane is called a ______ a function f(x,y) if $\nabla f(a,b) = (0,0)$.
- A ______ of radius R centered at P = (a, b, c) is the collection of points in space which have distance R from P.
- Q5 If f_{xy} and f_{yx} are both _____ then $f_{xy} = f_{yx}$.
- Classical Problems . Show all your work. No work=No credit!
- Q1(15pts) Evaluate $\iint_{S} xdS$ where S is the triangle with vertices (1,0,0),(0,1,0) and (0,0,1).

Solution:

Q2(15pts) Consider the vector field $F = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$. Let S be the cylinder surface that lies between the planes z = 0 and z = 2.

- Compute the surface integral: