

Q1 Evaluate $\int_{0}^{2} \int_{1}^{x} x^{2} y d y d x$
(A) $28 / 15$
(C) $1 / 24$
(E) None
(B) 3
(D) $1 / 13$ Q2
(A) π
(C) e
(B) $\ln 2+1$
(D) $\sqrt{2} e$
(E) None

Q3 Evaluate the line integral

$$
\oint_{C}\left(x^{2}+y^{2}\right) d x+2 x y d y
$$

where C is the square bounded by the lines $x=0, x=2, y=0, y=2$.
(A) -1
(C) $1 / 2$
(E) None
(B) 0
(D) 13

Q4 Find the directional derivative of the function $g(x, y)=(x+3 y)^{2}$ at the given point $(1,-1)$ in the direction of the vector $\vec{v}=\frac{1}{\sqrt{2}}(1,-1)$.
(A) $\sqrt{2}+2$
(C) $4 \sqrt{2}$
(E) None
(B) $\sqrt{3}-1$
(D) 5

Q5 Let $z=4+x^{3}+y^{3}-3 x y$. Which of the following statements are true?

1. $(1,1)$ is a local maximum,
2. $(0,0)$ is a saddle point
3. $(2,4)$ is a local minimum.
(A) Only 1
(C) Only 3
(E) None

Q6 $\underset{\rightarrow}{\text { Find }} \lim _{t \rightarrow 0}\left[\frac{\sin t}{t} \vec{i}+t \vec{j}+(t-1)^{4} \vec{k}\right]$
(A) \vec{i}
(C) $\vec{i}+\vec{j}+\vec{k}$
(E) None
(B) $\vec{i}+\vec{j}$
(D) $\vec{i}-\vec{k}$

Q7 What is the length of the arc described $r(t)=\left(3 t^{2} \vec{i}+2 t^{3} \vec{j}+\vec{k}\right)$
(A) $4 \sqrt{2}$
(C) $4 \sqrt{2}-2$
(E) None
(B) $4 \sqrt{2}+1$
(D) $\sqrt{2}+4$

Q8 Compute $\int_{-1}^{1} \sqrt{1-x^{2}} d x$
(A) $\frac{\pi}{2}$
(C) π^{2}
(E) None
(B) 2π
(D) $2 \pi^{2}$
(E) None

Q9 Evaluate the series $\sum_{n \neq \mathbb{C}}^{\infty} 2^{4-3 n}$
(A) $125 / 9$
${ }^{n}$ (屯) $63 / 7$
(B) $161 / 5$
(D) $128 / 7$

Q10 Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n^{3} x^{n}}{3^{n}}$
(A) 1
(C) 3
(E) Nōne
(B) 1.5
(D) 4

Q11 The value of $\lim _{(x, y, z) \rightarrow(2,3,0)}\left[x e^{z}+\ln (2 x-y)\right]$
(A) 2
(C) 3
(E) None
(B) $2 \sqrt{2}$
(D) $D N E$

Q12 Compute $\int_{C} \frac{d x}{x^{2}-x}$.
(A) $\ln \left|\frac{x-1}{x}\right|+C$
(C) $\frac{1}{2} \ln \left|x^{2}+1\right|+C$
(B) $2 \ln |x|+\frac{1}{3} \ln \left|x^{2}-x\right|+C$
(D) None

Q13 Compute $\int_{0}^{1} x e^{x} d x$.
(A) -1
(C) 1
(B) 0
(D) 2

True and False

Fill in the blanks

Q1 The surface $x^{2}+y^{2}+z^{2}=2 z$ is a sphere.

T
F
Q2 The vector $(1,2,3)$ is perpendicular to the plane $2 x+4 y+6 z=4$.

$$
\mathrm{T}
$$

F
Q3 $(0,0)$ is a local minimum of the function $f(x, y)=x^{6}+y^{6}$.

T
F
Q4 If $|\vec{v} \times \bar{w}|=0$ then $\vec{v}=0$ or $\vec{w}=0$.
T
F
Q5

T

Q6 If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then the sequence a_{n} converges to 0 .

$$
\mathrm{T}
$$

F

Q7 The $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
Q8 The $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is divergent.
T
F
Q9 The intersection of the sphere $x^{2}+y^{2}+z^{2}=169$ with the plane $z=14$ is a circle.

$$
\mathrm{T}
$$

F
Q10 The vectors $\vec{v}=(2,1,5)$ and $\vec{w}=(2,1,-1)$ are perpendicular.
\qquad

