Instructions: Keep all devices capable of communication turned off and out of sight. The exam lasts for 1 hour and 45 min . PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

Multiple Choice (85pts)

| Q1 Find the sum of the series $\sum_{n=1}^{+\infty}\left(\frac{e}{\pi}\right)^{n}$ |
| :--- | :--- |
| (A) $\frac{e}{\pi+1}$ (C) π
 (B) $\frac{e}{\pi-e}$ (D) $\frac{\pi}{e-\pi}$ (E) None |

Q2 If $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$, then $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{4}}$ is equal to
(A) $\pi^{4} / 96$
(C) $\pi^{4} / 7$
(E) None
(B) $\pi^{4} / 12$
(D) $\pi^{2} / 36$

Q3 Consider the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}+5 n-2}$. Using the comparison test with the series leads to the following result. There is only one correct answer.
(A) The series converges
(C) The test is not applicable
(B) The test diverges
(D) None

Q4 Suppose $f^{\prime \prime}$ is continuous and f and f^{\prime} have the values given below.
Evaluate $\int_{1}^{3} x f^{\prime \prime}(x) d x$

	$x=1$	$x=2$	$x=3$
$f(x)$	2	5	8
$f^{\prime}(x)$	3	1	4

(A) -12
(C) 3
(E) None
(B) 0
(D) 4

Q5 Find the power series for $\ln (1+x)$.
(A) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}$
(B) $\sum_{n=1}^{\infty} \frac{(-1)^{n+2} x^{n}}{n+1}$
(D) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}$
(B) $\sum_{n=1}^{\infty} \frac{(-1}{n}$
(C) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
(E) None

Q12 The region bounded by $y=x^{3}, y=1$ and $x=0$ is rotated about the y-axis to form a solid.Find the volume of the solid.

(A) $V=6 \pi / 7$
(B) $V=4 \pi / 7$
(C) $V=2 \pi / 7$

Q13 Compute $\int \frac{1}{3+x^{2}} d x$.
(A) $\frac{1}{6} \tan ^{-1} \frac{x}{3}+c$.
(C) $\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}+$
(D) $\frac{1}{3} \tan ^{-1} \frac{x}{9}+c$.
(B) $\frac{1}{18} \tan ^{-1} \frac{x}{18}+c$.
c.
(E) None
(D) $V=3 \pi / 5$
(E) None

| Q14 The integral $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x$ equals: |
| :--- | :--- |
| $\begin{array}{ll}\text { (A) } \pi / 3 & \text { (C) } 3 \pi / 4\end{array}$ |.

(E) None

(B) $\pi / 2$

(D) $\pi / 4$

Q15 Find the area of the region between $x=y^{2}$ and $x+2 y^{2}=3$.
(A) 4
(C) 9
(B) 5
(D) 11
(E)

None

True and False(10pts)

Q1(10pts) If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then the sequence a_{n} converges to 0 .

$$
\mathrm{T}
$$

Q2 The $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
Q3 The $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is divergent.

T

Q4 The intersection of the sphere $x^{2}+y^{2}+z^{2}=169$ with the plane $z=14$ is a circle.

$$
\mathrm{T}
$$

Q4 The vectors $\vec{v}=(2,1,5)$ and $\vec{w}=(2,1,-1)$ are perpendicular.

$$
\mathrm{T}
$$

Fill in the blanks(10pts)

Q1 The \qquad from the point $P=\left(x_{1}, y_{1}, z_{1}\right)$ to the
\square $a x+b y+c z+d=0$ is given by

$$
D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Q4 If $\|\vec{v}\|=1$ then \vec{v} is called \qquad

Q16 Find the equation of the plane through $(2,4,6)$ that is parallel to the plane $x-y+z=4$
(A) $x+y-z=14$
(C) $x-y+z=-3$
(E) None
(B) $x-y+z=4$
(D) $2 x-y+z=2$

Q17 Find parametric eq
$P(1,3,2)$ and $Q(3,2,5)$.
(A) $\frac{x-1}{2}=3-y=\frac{z-2}{3}$
(C) $\frac{x-1}{4}=1-y=\frac{z-1}{3}$
(B) $\frac{x-1}{3}=2+y=\frac{z-2}{2}$
(D) None

