Instructions: Keep all devices capable of communication turned off and out of sight.

Question 1

Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that $T\left(\binom{1}{-1}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $T\left(\binom{-2}{3}\right)=\left(\begin{array}{c}-2 \\ -4 \\ 7\end{array}\right)$. Find $T\left(\binom{x}{y}\right)$. Ans: $T\left(\binom{x}{y}\right)=\left(\begin{array}{c}x \\ 2 x \\ 16 x+13 y\end{array}\right)$.

Question 2

Describe the span in \mathbb{R}^{3} of the vectors $\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 1 \\ 3\end{array}\right)$, i.e. $\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 3\end{array}\right)\right\}=?$
Ans: $\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 3\end{array}\right)\right\}=-3 x+z=0$ is a plane.

Question 3

1. Rewrite the system in the matrix form $A X=B$
2. Solve the system

$$
\begin{aligned}
x-2 y+w & =2 \\
-z+3 w & =0 \\
2 x-4 y+3 z-7 w & =4
\end{aligned}
$$

3. Write the solution set in parametric vector form.

$$
\begin{aligned}
& \text { Ans: }\left(\begin{array}{cccc}
1 & -2 & 0 & 1 \\
0 & 0 & -1 & 3 \\
2 & -4 & 3 & -7
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
4
\end{array}\right) . \\
&\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
2 y-w+2 \\
y \\
3 w \\
w
\end{array}\right) \\
&\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
2 s-t+2 \\
s \\
3 t \\
t
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
0 \\
3 \\
1
\end{array}\right)
\end{aligned}
$$

where s, t any real number. It is clear that the system has infinitely many solutions.

Question 4

Let T be a one-to-one linear transformation. Prove that if $\{u, v, w\}$ is a linearly independent set then $\{T(u), T(v), T(w)\}$ is a linearly independent set.

Proof: Suppose $\{u, v, w\}$ is a linearly independent set. If

$$
c_{1} T(u)+c_{2} T(v)+c_{3} T(w)=0
$$

then by linearity of T we have

$$
T\left(c_{1} u+c_{2} v+c_{3} w\right)=0
$$

and using the fact that T is one-to-one, we have

$$
c_{1} u+c_{2} v+c_{3} w=0
$$

Since $\{u, v, w\}$ is a linearly independent set, we get $c_{1}=c_{2}=c_{3}=0$. Thus $\{T(u), T(v), T(w)\}$ is a linearly independent set.

Question 5

The following figure shows a rectangle in the plane. Find the new coordinates of the four vertices if this rectangle is rotated 45° counterclockwise around the origin.

Question 6

Is there a linear transformation that maps $(1,0)$ to $(5,3,4)$ and maps $(3,0)$ to $(1,3,2)$? Explain.

Question 7

Determine the quadratic function $p(x)=a x^{2}+b x+c$ that passes through the points $(2,4),(3,6),(4,10)$..
Ans: $p(x)=x^{2}-3 x+6$

Question 8

Let c be a scalar and let $\mathbf{v}_{1}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$ and $\mathbf{v}_{3}=$ $\left(\begin{array}{l}3 \\ 5 \\ c\end{array}\right)$. For what values of c are the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} linearly independent?

Question 9

Let v and w be vectors in \mathbb{R}^{n}. Let $S=\{v, w\}$ and $T=\{v, v-w\}$. Show that $\operatorname{span} S=\operatorname{span} T$.

Question 10

Write a linear system corresponding to the given augmented matrix.

$$
\left(\begin{array}{ccccc|c}
6 & 2 & -3 & 4 & 1 & 0 \\
5 & 0 & 0 & 1 & 200 & 2
\end{array}\right)
$$

Question 11

Give an example of a system of three linear equations in two variables that has infinitely many solutions.

Ans:

$$
\begin{array}{r}
x+y=1 \\
3 x+3 y=3 \\
5 x+5 y=5
\end{array}
$$

Question 12

Give an example of a system of four linear equations in two variables that has a unique solution.

Ans:

Question 13

If possible, express $\binom{7}{7}$ as a linear combination of $\binom{-1}{1}$ and $\binom{5}{2}$ Ans:

Question 14

Find the values of a, b and c such that the following system

$$
\begin{aligned}
x-y+2 z & =a \\
2 x+3 y-z & =b \\
7 x+3 y+4 z & =c
\end{aligned}
$$

(i) is inconsistent;
(ii) has infinitely many solutions;
(iii) has a unique solution.

Ans: The system is inconsistent when $c \neq 2 b+3 a$. Otherwise it has infinitely many solutions.(No unique solution)

Question 15

Consider augmented matrix of a system of linear equations $\left(\begin{array}{ccc|c}1 & m & 2 & 0 \\ 0 & 3 & m+2 & 0 \\ 0 & 0 & m^{2}-1 & (m+1)(3 m-2)\end{array}\right)$

1. For which values of m does the system have no solutions. Explain.
2. For which values of m does the system have a unique solution. Explain.
3. For which values of m does the system have a infinitely many solutions. Explain.

Question 16

Find the image of our standard letter \mathbf{L} under the linear transformation $T\left(\binom{x}{y}\right)=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)\binom{x}{y}$.

True/False . No justifications are needed.
Q1 Subsets of linearly dependent sets are linearly dependent.
\square F

Q2 Every system of linear equations has a solution.
T
F

Q3 If three nonzero vectors are linearly dependent, then one of them is a scalar multiple of one of the others.
T

Q4 The following set S is a basis for \mathbb{R}^{6}.

$$
\begin{gather*}
S=\{(3,2,0,8,5,2),(4,3,2,0,4,1),(3,2,1,4,5,2),(2,3,2,1,0,0)\} \\
\mathrm{T} \tag{F}
\end{gather*}
$$

Q5 The vectors $v_{1}=(3,1,5), v_{2}=(2,4,3)$, and $v_{3}=(5,5,8)$ are linearly dependent.

Q6 The vectors $v_{1}=(3,1,4,2), v_{2}=(5,3,7,1), v_{3}=(6,2,8,4)$ and $v_{3}=(5,5,8)$ are linearly independent.
\qquad
\square

Q7 The dimension of the set $S=\operatorname{Span}\left\{\binom{-2}{2},\binom{3}{-3}\right\}$ is 2 . T F

Q8 The dimension of the set $S=\operatorname{Span}\left\{\binom{1}{-2},\binom{0}{0}\right\}$ is 2 .
\square F
Q9 The function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y)=\left(x^{2}, y\right)$ is a linear transformation.

Q10 If T is a Linear transformation then $T(0)=0$ T

Q11 A consistent linear system with 2 equations and 3 variables must have infinitely many solutions.

T

Q12
Homogeneous systems are always consistent.
T
F
Q13 A system with more equations than variables must be inconsistent.
\square
\square

Q14 If a consistent system has more variables than equations, it must have infinitely many solutions.

T

$$
\begin{equation*}
\mathrm{T} \tag{F}
\end{equation*}
$$

Q16 An inconsistent system has more than one solution.
\square
\square
Q17 Two matrices are row equivalent if they have the same number of rows.
\square

Q18 Two linear systems are equivalent if they have the same solution set.

$$
\mathrm{T}
$$

F

Q19 A basic variable in a linear system is a variable that corresponds to a pivot column in the coefficient matrix.
T
F

Q20 The row reduction algorithm applies only to augmented matrices for a linear system.

Q21 The echelon form of a matrix is unique.

$$
\mathrm{T}
$$

\square
Q22 The reduced row echelon form of a matrix is unique.

$$
\mathrm{T}
$$

\square
Q23 Whenever a system has free variables, the solution set contains many solutions

$$
\mathrm{T}
$$

\square
Q24 If the equation $A x=b$ is inconsistent, then b is not in the set spanned by the columns of A.
\square

Q25 A linear transformation preserves the operations of vector addition and scalar multiplication.

T

Q26 Every matrix transformation is a linear transformation.
\square
\square
Q27 If \mathbf{x} and \mathbf{y} are linearly independent, and if \mathbf{z} is in the $\operatorname{Span}\{x, y\}$ then $\{x, y, z\}$ is linearly dependent.

$$
\begin{equation*}
\mathrm{T} \tag{F}
\end{equation*}
$$

Q28 Two vectors are linearly dependent if and only if they lie on a line through the origin.

T \square

Q29 Every system of linear equations with more variables than equations must have infinitely many solutions.
\square
Q30 If a system of linear equations has the trivial solution then it must be a homogeneous system of equations.
\square F
Q31 If a homogeneous system of linear equations is also a triangular system, then the only solution is the trivial solution. T

F
Q32 If the set of vectors $\left\{u_{1}, u_{2}\right\}$ spans \mathbb{R}^{2}, then so does the set $\left\{u_{1}, u_{2}, u_{3}\right\}$, for any vector u_{3} in \mathbb{R}^{2}.
\square
\square
Q33

$$
\operatorname{Span}\left\{\left(\begin{array}{c}
4 \\
3 \\
-1
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
7
\end{array}\right)\right\}=\mathbb{R}^{3}
$$

