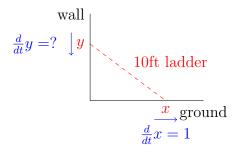
Name:	Mathematical Analysis I/ Sample Final Exam			Fall 2016
Instructions: Keep all devices capable of comm out of sight. The exam lasts for 1 hour and 45 YOUR ANSWERS WITH AN X, not a circle!	Q7 Let $f(x) = x \ln x$. Find the intervals where $f(x)$ is concave downward.			
		(A) $f(x)$ is not	(B) $(0,1)$	(D) $(0,\infty)$
Q1 Let $F(x) = \int_{1}^{1} \sqrt{2t^2 - 3t + 1}$. Find $F'(3)$		concave down- ward any-	(C) $(0, e)$	(E) None
Q1 Let $F(x) = \int_{1}^{x} \sqrt{2t^2 - 3t + 1}$. Find $F'(3)$ (A) 10 (C) -1 (B) 15 (D) 0	(E) None	where.		
(B) 15 (D) 0		Q8 Suppose that a f	function $h(x)$ has derivat	tive $h'(x) = x^2 + 4$. Find
Q2 What is the average of the function $h(t)$	the x value in the interval $[-1,3]$ where $h(x)$ takes its minimum.			
		(A) 0	(C) 2	(E) None
$\begin{array}{c ccccc} (A) & -5 \\ (B) & 260/9 \end{array} & \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(E) None	(B) -1	(D) 4	
(B) 260/9 (D) 211/13	(E) None(A) 0(C) 2(B) -1(D) 4 $y^2 = 4$ is 2π , evaluate(A) 2(C) 1.5(A) 2(C) 1.5(B) 3(D) 1			<u>1</u>
Q3 Given that the area of the ellipse $4x^2 +$	(A) 2	$ \begin{vmatrix} n \to \infty \\ (C) & 1.5 \end{vmatrix} $	(E) None	
the integral $\int_0^1 \sqrt{4-4x^2} dx$ (Hint: Think of the	(B) 3	(D) 1		
area.)		Q10 Evaluate the integral $\int_{-4}^{8} x dx$		
(A) $-\pi$ (C) π (B) $\pi/2$ (D) 1	(E) None	(A) 24	(C) 40	(E) None
(B) $\pi/2$ (D) 1		(A) 24 (B) 38	(D) 48	
Q4 Suppose that $f = g \circ h + h \circ g$, $g(0) = 1$, $h(0) = 2$, $g'(0) = 3$, $g'(2) = 5$, $h'(0) = 6$, $h'(1) = 7$ then $f'(0) = 6$		Q11 Given the function $f(x) = x^2$, which value of c satisfies the conclusion of the Mean Value Theorem on the interval $[-4, 5]$?		
(A) 51 (C) 61	(E) None			
(A) 51 (C) 61 (B) 55 (D) 20		(B) 2	(C) 3 (D) 4	
Q5 Evaluate the limit $\lim_{x \to 0} \frac{e^x - 1 - x}{2x^2}$				
Q5 Evaluate the limit $\lim_{x\to 0} \frac{e^x - 1 - x}{2x^2}$ (A) -2 (C) 0	(E) None			ų
(B) -1 (D) $1/4$		Q12 A rectangle in	the (x, y) -plane has	$\hat{\frown}$
Q6 Find the minimum value of $f(x) = x^3 - 3x + 3$ on the interval $[-2, 4]$.		its base on the x -axis corners on the curve y	s and its upper two = $-x^2 + 3$. Find the	
$\begin{array}{c ccccc} (A) & -5 & & & (C) & 1 \\ (B) & -1 & & & (D) & 3 \end{array}$	(E) None	largest possible area fo	or such a rectangle.	$\longrightarrow x$
(B) -1 (D) 3		(A) 4	(C) 2.5	(E) None
		(B) 3	(D) 2	

1

Name:]	Mathematical Analysis I/ Sample Final Exam			
Q13 Consider the function	$f(x) = \frac{x^2 + 5x + 6}{x^2 - 4}.$	Which of the following	(A) 1	(C) 2	(E) None
statements describes the asymptotes of $f(x)$? (VA:Vertical asymptote,		(B) 1.5	(D) $5/2$		
HA: Horizontal asymptote)			Q19 Find the limit $\lim_{x\to 0} (1+3x)^{\frac{1}{x}}$		
(A) VA: $x = \pm 2$, HA: $u = 1$	HA: $y = x$.	(D) VA: $x = 2$, HA: $u = 1$	(A) e^{3}	(C) e^{-2}	(E) None
(A) VA: $x = \pm 2$, HA: $y = 1$. (B) VA: $x = 2$,	C) VA: $x = \pm 2$,	(F) None	(B) 3 <i>e</i>	(D) 2.71	
Q14 Find the linear approximation $L(x)$ to $f(x) = \cos x$ at $a = \frac{\pi}{2}$. (A) $x + \frac{\pi}{2}$ (C) $-x + \frac{\pi}{2}$ (E) None		Q20 The graph of th	e function f is shown	y = f(x)	
(A) $x + \frac{\pi}{3}$ (B) $x + \frac{\pi}{2}$ (I)	$ \begin{array}{c} c \\ c$		right. Find the integ	ral: 7	
	-		$\int_{0}^{6} f(x) dx + \int_{0}^{7} f^{-1}(x) dx$		
Q15 Suppose $f(t)$ is continuous on $[1,7]$ with $f(1) = 1$ and $(7) = 49$. Find $\frac{d}{dt} \left[\int_{1}^{7} f(t) dt \right]$ (A) 2 (C) 48 (E) None (B) 24 (D) 0			$\int_{1}^{6} f(x)dx + \int_{1}^{7} f^{-1}(x)dx + \int_{1}^{7}$		
Find $\frac{dt}{dt} \left[\int_{1}^{t} f(t) dt \right]$	(1) 19	(F) None	(A) 38 (C) 4 (B) 39 (D) 4	41 (E) ¹	
(A) 2 (C	() 40	(E) None	(B) 39 (D) 4	42 None -	1 6
(B) 24 (I	D) 0		Fill in	the Blank Questions(1	0 pts)
			01 The quantity la	m is called the	between
Q16 Let $f(x)$ be an even function contin- uous on its domain $(-\infty, \infty)$. The figure below shows the areas of regions bounded by the graph of $f(x)$ and the x - axis for x			$\begin{array}{ c c }\hline \mathbf{Q1} & \text{The quantity } y \\ & \text{and} \end{array}$	-x is called the	Detween
			Q2 A function associates with each member of its		
in the interval $[0, 6]$. Find	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		precisely one member of it	S
J	J_{-6}	Area=18			
(A) -12 (0	C) -6	(E) None	Q3 Suppose that j	f is	$_$ on $[a, b]$ and f is
$\begin{array}{c cccc} (A) & -12 & & & \\ (B) & -10 & & & \\ \end{array} $	D) 10		$\frac{1}{1}$ in (a, b) such that f'	on (a, b) . Then ther $(c) = \frac{f(b) - f(a)}{b - a}.$	e exists a constant
(D) If (1)	octions with the given	derivative $u' - \frac{9x}{2}$	(a, b) such that j	$(c) = \frac{b-a}{b-a}.$	
(A) $9x^{9/5} + C$ (0)	C) $5x^{9/4} + C$	(E) None $\sqrt[5]{x}$	Q4 The equation o	f the	to the curve
Q17Find all possible fun(A) $9x^{9/5} + C$ (C(B) $5x^{9/5} + C$ (I	D) $6x^{9/5} + C$		y = f(x) at the point	f the $x = a$ is given by $y - f($	f(a) = f'(a) (x - a)
$\begin{array}{c} \textbf{Q18} f: (1.5,9) \to \mathbb{R}, \ f(x) \end{array}$			Q5 $F(x)$ is an	of .	f(x) if $F'(x) = f(x)$.
	_, _, _, _, _,	J (0).			, , , , , , , , , , , , , , , , , , ,

Name:

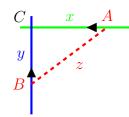
True/False Questions(10 pts). No justifications are needed. Show all your work. No work=No credit (40 pts). If f(x) is continuous on [a, b] and if f(b) = f(a) then f(x) must $y = x^2 + x$ have a zero in [a, b]. Т F Q2 If f is constant 1 then $\int_{a}^{b} f(x)dx$ is the length of the interval [a, b]. Compute the definite integral Q1 $(x+x^2)dx$ as the limit of a **right** Q3 If f'(x) = g'(x), then f(x) = g(x). Riemann sum. F Q4 The fundamental theorem of calculus implies that $\int_{a}^{3} f''(x) dx =$ $\underline{2}$ $\frac{4}{n}$ 2n-2 2nnnf'(3) - f(0).(a) $\Delta x =$ Т F Q5 If f(x) is smaller than g(x) for all x, then $\int_0^1 f(x) - g(x) dx$ is (b) Right endpoint of the k-th subinterval, $x_k =$ negative. Т **Q6** If f is discontinuous at 0, then $\int_{-1}^{1} f(x) dx$ is infinite. (c) Height of the k-th rectangle: $f(x_k) =$ Q7 If x(t) + y(t) = 10 is constant and x'(t) = 3 then y'(t) = -3(d) Find the area of the k-th rectangle: $A_k = f(x_k)\Delta x =$ Q8 If a differentiable function f has a critical point at 1, then the function $F(x) = \int_0^{\infty} f(t)dt$ has an inflection point at 1. (e) Sum of the areas of the n rectangles: $\sum_{k=1}^{n} A_k =$ Q9 The acceleration is the anti-derivative of the velocity. Q10 If f is concave up on [0, 1] and concave down on [1, 2] then 1 is (f) Find the limit: $\lim_{n\to\infty} \sum_{k=1}^n A_k =$ an inflection points. F Т

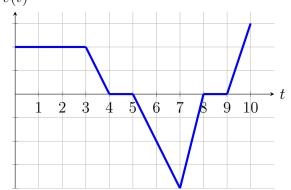

Name:

- Q2 Let $f(x) = 2 \tan x$.
- Find the linear approximation L(x) of $f(x) = 2 \tan x$ at $x = \pi$.
- Use linear approximation L(x) to approximate $2 \tan(3.3)$.

```
Q3 Find \lim_{x \to \frac{\pi}{2}^{-}} (\tan x - \sec x)
```

Q4 Find two positive numbers x and y such that x + y = 60 and xy^3 is maximum.


Q5 A ladder of length 10ft rests against a vertical wall. The bottom of the ladder slides away from the wall with 1ft/s How fast is the top sliding when the bottom is 6ft from the wall?


Q6 Two cars are headed for the same road intersection:

- car A is traveling west with 50mi/h
- $\bullet~{\rm car}~B$ is traveling north with 60mi/h

At what rate are the cars approaching when A is 0.3mi and B is 0.4mi from the intersection?

Q7 The figure below shows the velocity v(t) of a particle moving on a horizontal coordinate line, for t in a closed interval [0, 10]. v(t)

Fill in the following blanks. Use interval notation where appropriate.

• The	particle	is	moving	forward	during:
• The	particle's	speed	l is	increasing	during:
• The	particle	has	positive	acceleration	during:
• The	particle	has	zero	acceleration	during:
• The	particle	achieves	its	greatest spe	ed at:
				_	_

 \bullet The particle stands still for more than an instant during: