Mathematical Analysis II/ Midterm Exam (Group B)

Spring 2016

Instructions: Keep all devices capable of communication turned off and out of sight. The exam lasts for 1 hour and 45 min. PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

Multiple Choice(85pts)

Q1 Find the sum of the series $\sum_{n=1}^{+\infty} \left(\frac{e}{\pi}\right)^n$		
(A) $\frac{e}{\pi+1}$	(D) $\frac{\pi}{e-\pi}$ (D) $\frac{\pi}{e-\pi}$	(E) None
(B) $\frac{e}{\pi - e}$	(D) $\frac{\pi}{e-\pi}$	
Q2 If $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$, then $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4}$ is equal to (A) $\pi^4/96$ (C) $\pi^4/7$ (E) None (B) $\pi^4/12$ (D) $\pi^2/36$		
(A) $\pi^4/96$	(C) $\pi^4/7$	(E) None
(B) $\pi^4/12$	(D) $\pi^2/36$	
Q3 Consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n + 5n - 2}$. Using the comparison test		
with the series leads to the following result. There is only one correct		
answer.		

- (A) The series converges (C) The test is not applicable
- (B) The test diverges

(D) None

Q4 Suppose f'' is continuous and f and f' have the values given below.

Evaluate
$$\int_{1}^{3} x f''(x) dx$$

(A) -12 (C) 3 (E) None
(B) 0 (D) 4
(A) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^{n}}{n}$ (B) $\sum_{n=1}^{\infty} \frac{(-1)^{n+2}x^{n}}{n+1}$ (D) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^{n}}{n}$
(C) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ (E) None

Q6 The length of the curve determined by : $x = \cos^3 t$, $y = \sin^3 t$ from $\overline{t=0}$ to $t=\frac{\pi}{2}$ is (A) 5/3 (C) 3/4 (E) None (B) 6 (D) 3 Q7 The length of the curve determined by x = 3t and $y = 2t^2$ from $\overline{t=0}$ to t=9 is (A) $\int_{0}^{9} \sqrt{9t^{2} + 4t^{4}} dt$ (C) $\int_{0}^{9} \sqrt{9t^{2} + 4t^{4}} dt$ (E) None (B) $\int_{0}^{9} \sqrt{9 + 16t^{2}} dt$ (D) $\int_{0}^{9} \sqrt{9 + 16t^{4}} dt$ **Q8** Compute $\int \frac{dx}{x^3 - x}$. Q9Compute $\int_0^2 \sqrt{4 - x^2} dx$ (A) $\frac{\pi}{2}$ (C) $2\pi^2$ (B) π (D) 4π (E) None Q10 Find the value of the definite integral $\int_0^1 x e^{-x} dx$ (A) $1 - 2e^{-1}$ | (C) $-1 + 4e^{-1}$ | (E) None (B) $-1 + 2e^{-1}$ | (D) $2e^{-1}$

3

Spring 2016

Q3 Use the ratio test to determine whether the series $\sum_{n=1}^{\infty} \frac{n^{\pi}}{\pi^n}$ con-Q4 Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^n}{2^n}$, and its sum Find the area of the surface when the graph of $f(x) = \sqrt{x}$ between $\begin{array}{l} x = 1 \text{ and } x = 4 \text{ and is revolved about the } x \text{-axis.} \\ \hline \mathbf{Q6} \text{ Find the arc length of the curve} \begin{cases} x = 2t^3 \\ y = 3t^2 \end{cases} \text{ for } 0 \leq t \leq \sqrt{3}. \end{array}$ Q7 Find the arc length of the curve $y = 10x^{\frac{3}{2}}$ for $0 \le x \le 3$. Q8 Find the volume of the solid of revolution formed by rotating the region bounded by the x-axis and the graph of $f(x) = \sqrt[5]{x}$, from x = 0Q9 Find the volume of the solid of revolution formed by rotating the region bounded by the y-axis and the graph of $f(x) = \sqrt[7]{x}$, from y = 0Q10 Find the Maclaurin series expansion of $f(x) = \ln(1-x)$, and its Q11 Find the Maclaurin series expansion of $f(x) = \frac{x}{1-x^3}$, and its Q12 Compute the sum: $1 - \frac{\pi^2}{2!} + \frac{\pi^4}{4!} - \frac{\pi^6}{6!} + \frac{\pi^8}{8!} + \cdots$.

work=No credit