

ENGINEERING MATHEMATICS-I
SAMPLE MIDTERM EXAM
April $2^{\text {th }}, 2017$

Name:

\qquad

Multiple Choice(50pts)

Q1 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear mappting, satisfying $T(1,2)=(1,0,1)$ and $T(2,5)=(0,1,1)$. Find $T(0,1)$.
(A) $(0,2,3)$
(B) $(-1,1,2)$
(C) $(0,0,1)$
(D) $(1,0,0)$
(E) None

Q2 If $u=(-2,1,1)$ and $v=(1,0,1)$, then $\left\|\operatorname{proj}_{v} u\right\|$ is
(A) 0
(B) $1 / 2$
(C) $\frac{1}{\sqrt{2}}$
(D) 1
(E) None

Q3 Parametric equation for the line passing through $(1,1,-1)$ and which is perpendicular to the plane $2 x-y+3 z=4$ are:
(A) $x=1+2 t, y=1-t, z=-1+3 t$
(D) $x=1+t, y=1-t, z=-1+3 t$
(B) $x=, y=, z=$,
(E) None
(C) $x=1+t, y=1-t, z=-1+t$

Q4 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear mapping, satisfying $T(1,2)=(1,0,1)$ and $T(2,5)=(0,1,1)$. Find $T(0,1)$.
(A) $(0,2,3)$
(B) $(-1,1,2)$
(C) $(0,0,1)$
(D) $(1,0,0)$
(E) None

Q5 Under what condition can a vector (a, b, c) be written as a linear combination of $(1,2,0)$ and $(1,1,1)$.
(A) $a+b+c=$
(B) $a+2 b+c=$
0
(C) $2 a-b-c=$
0
(D) $\begin{aligned} & a 2+b+ \\ & 2 c=0\end{aligned}$
(E) None

Q6 The angle between $u=(0,3,-3)$ and $v=(-2,2,-1)$ is:
(A) $\pi / 3$
(B) $\pi / 6$
(C) $\pi / 2$
(D) $\pi / 4$
(E) None

Q7 Find an equation of the plane which passes through the point $(1,-7,8)$ and which is perpendicular to the line whose parametric equations are: $x=2+2 t, y=7-4 t, z=-3+t ; t \in \mathbb{R}$
(A) $\begin{aligned} & 2 x-4 y+ \\ & z=-38\end{aligned}$
(B) $\begin{aligned} & x-4 y+ \\ & z=8\end{aligned}$
(C) $x-4 y+$
(D) $\begin{aligned} & 2 x-y+ \\ & z=11880\end{aligned}$
(E) None

Q8 Suppose a linear system has augmented matrix $\left(\begin{array}{lll|l}1 & 1 & 1 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & q & p\end{array}\right)$. Find all values of p and q such that this system has a unique solution.
(A) $(0,2,3)$
(B) $(-1,1,2)$
(C) $(0,0,1)$
(D) $(1,0,0)$
(E) None

Q9 Which of the following functions $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation?.
(A) $T(x, y)=(x, y+$
(B) $T(x, y)=(x+$
(C) $T(x, y)$
$=$
(D) $T(x, y)=(x, 0)$
(A) $\binom{4}{58}$
(B) $\binom{2}{51}$
(C) $\binom{11}{-7}$
(D) $\binom{4}{68}$
(E) None

Q11 Suppose that A is 3×4. Then the number of solutions to the system $A \mathbf{x}=\mathbf{0}$ is
(A) infinite
(B) one
(C) two
(D) zero
(E) None

True\& False(20 pts)

Q1 A consistent linear system with 2 equations and 3 variables must have infinitely many solutions.

F
Q2 Homogeneous systems are always consistent.
T
F
Q2 There exists a linear transformation T that maps $(1,0)$ to $(5,3,4)$ and maps $(3,0)$ to $(1,3,2)$.

T

F

Fill in the blanks(10pts

Q1 A subset $\left\{v_{1}, \ldots, v_{d}\right\}$ of \mathbb{R}^{n} is \qquad
if there are \qquad $a_{1}, \ldots, a_{d} \in \mathbb{R}$, not all zero, such that

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{d} v_{d}=0
$$

Q2 Given two vectors $u, v \in \mathbb{R}^{n}$ which are \qquad then $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.
Q3 A general $m \times n$ matrix A has m \qquad and n \qquad . The \qquad
in the matrix are called the \qquad of A.
Q4 A system which has a \qquad is called \qquad . Otherwise it is inconsistent.
Q5 Any set of vectors containing the \qquad is linearly dependent
Q6 If T is a Linear transformation then $T(0)=$ \qquad

Classical problems(20pts) . Show all your work. No work=No credit

Q1 Balance the following chemical reaction

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} .
$$

Q2 Find the values of a and b such that the following system :

$$
\begin{aligned}
x+y & =2 \\
x+2 y & =1 \\
3 x+5 y+a & =b
\end{aligned}
$$

(i) is inconsistent;
(ii) has infinitely many solutions;
(iii) has a unique solution.

Q3 Identify the elementary row operation performed to obtain the new row-equivalent matrix.

$$
\left[\begin{array}{rr|r}
3 & -1 & -4 \\
-4 & 7 & 9
\end{array}\right] \sim\left[\begin{array}{rr|r}
3 & -1 & -4 \\
8 & 3 & -7
\end{array}\right]
$$

Q4 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T\left(\binom{x}{y}\right)=\binom{x+y}{x-2 y}
$$

Draw the image of the unit square under T, label all of its vertices.
Q5 Show that the vectors $u=\binom{1}{3}$ and $v=\binom{-1}{1}$ are linearly independent.

