

ENGINEERING MATHEMATICS-I SAMPLE MIDTERM EXAM

April 2 $^{\rm th}\!\!,\,2017$

1)

1, y

Multiple Choice(50pts)					
Q1 Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear mapping, satisfying $T(1,2) = (1,0,1)$ and $T(2,5) = (0,1,1)$. Find T	(0,1).				
(A) $(0,2,3)$ (B) $(-1,1,2)$ (C) $(0,0,1)$ (D) $(1,0,0)$ (E) Non	e				
Q2 If $u = (-2, 1, 1)$ and $v = (1, 0, 1)$, then $ \operatorname{proj}_{v} u $ is					
(A) 0 (B) $1/2$ (C) $\frac{1}{\sqrt{2}}$ (D) 1 (E) Non	.e				
Q3 Parametric equation for the line passing through $(1, 1, -1)$ and which is perpendicular to the $2x - y + 3z = 4$ are:	plane				
(A) $x = 1 + 2t, y = 1 - t, z = -1 + 3t$ (D) $x = 1 + t, y = 1 - t, z = -1 + 3t$					
(B) $x =, y =, z =,$ (E) None					
(C) $x = 1 + t, y = 1 - t, z = -1 + t$					
Q4 Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear mapping, satisfying $T(1,2) = (1,0,1)$ and $T(2,5) = (0,1,1)$. Find $T(2,5) = (0,1,1)$.	(0, 1).				
(A) $(0,2,3)$ (B) $(-1,1,2)$ (C) $(0,0,1)$ (D) $(1,0,0)$ (E) Non	.e				
Q5 Under what condition can a vector (a, b, c) be written as a linear combination of $(1, 2, 0)$ and $(1, 1)$, 1).				
(A) $a+b+c = (B) a+2b+c = (C) 2a-b-c = (D) a2 + b + (E) Non 0 0 0 2c = 0 (E) Non 2c = 0 (E)$	e				
Q6 The angle between $u = (0, 3, -3)$ and $v = (-2, 2, -1)$ is:					
(A) $\pi/3$ (B) $\pi/6$ (C) $\pi/2$ (D) $\pi/4$ (E) Non	e				
Q7 Find an equation of the plane which passes through the point $(1, -7, 8)$ and which is perpendicular to the line whose parametric equations are: $x = 2 + 2t, y = 7 - 4t, z = -3 + t; t \in \mathbb{R}$					
(A) $2x - 4y + (B) x - 4y + (C) x - 4y + (D) 2x - y + (E) Non z = -38 z = 8 z = -18 z = 11880$	e				
Q8 Suppose a linear system has augmented matrix $\begin{pmatrix} 1 & 1 & 1 & & 0 \\ 0 & q & 0 & & 0 \\ 0 & 0 & q & & p \end{pmatrix}$. Find all values of p and q such that	at this				
system has a unique solution.					
(A) $(0,2,3)$ (B) $(-1,1,2)$ (C) $(0,0,1)$ (D) $(1,0,0)$ (E) Non Q9 Which of the following functions $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation?.	e				
(A) $T(x,y) = (x,y+ $ (B) $T(x,y) = (x+ $ (C) $T(x,y) = $ (D) $T(x,y) =$	(x, 0)				

 (y^2, xy)

(A) $\begin{pmatrix} 4\\58 \end{pmatrix}$	(B) $\begin{pmatrix} 2\\51 \end{pmatrix}$	(C) $\begin{pmatrix} 11\\ -7 \end{pmatrix}$	(D) $\begin{pmatrix} 4\\68 \end{pmatrix}$	(E) None				
Q11 Suppose that A is 3×4 . Then the number of solutions to the system $A\mathbf{x} = 0$ is								
(A) infinite	(B) one	(C) two	(D) zero	(E) None				
True& False(20 pts)								
Q1 A consistent linear system with 2 equations and 3 variables must have infinitely many solutions. T F								
Q2 Homogeneous T	systems are always con	sistent.						
Q2 There exists a T	Q2 There exists a linear transformation T that maps $(1,0)$ to $(5,3,4)$ and maps $(3,0)$ to $(1,3,2)$. T							
	F	ill in the blanks(10p	ots					
Q1 A subset $\{v_1, \ldots, v_n\}$	\ldots, v_d of \mathbb{R}^n is							
if there are $a_1, \ldots, a_d \in \mathbb{R}$, not all zero, such that								
	a_1, \ldots, a_l	$v_1 + a_2 v_2 + \dots + a_d v_d =$	= 0.					
	a_1, \ldots, a_l	$v_1 + a_2 v_2 + \dots + a_d v_d =$	= 0.					
Q2 Given two vec	tors $u, v \in \mathbb{R}^n$ which ar	$v_1 + a_2 v_2 + \dots + a_d v_d =$	= 0. then $ u + v ^2 = u ^2 + u ^2$	- v ² .				
Q2 Given two vec Q3 A general $m \times r$	tors $u, v \in \mathbb{R}^n$ which ar n matrix A has m	$v_1 + a_2 v_2 + \dots + a_d v_d =$ $e _ _ and n _$	= 0. then $ u + v ^2 = u ^2 + $. Th	- <i>v</i> ² . ie				
Q2 Given two vec Q3 A general $m \times r$ in the matrix are ca	tors $u, v \in \mathbb{R}^n$ which ar n matrix A has m alled the	$v_1 + a_2 v_2 + \dots + a_d v_d =$ $e _ and n _ and n _$ $of A.$	= 0. then $ u + v ^2 = u ^2 + $ The	- <i>v</i> ² . 				
Q2 Given two vec Q3 A general $m \times r$ in the matrix are ca Q4 A system which	tors $u, v \in \mathbb{R}^n$ which ar n matrix A has m alled the h has a	$v_1 + a_2 v_2 + \dots + a_d v_d =$ $e _ and n _ $	= 0. then $ u + v ^2 = u ^2 + $ The The	- v ² . 				
Q2 Given two vec Q3 A general $m \times n$ in the matrix are ca Q4 A system which inconsistent.	tors $u, v \in \mathbb{R}^n$ which ar n matrix A has m alled the h has a	$v_1 + a_2 v_2 + \dots + a_d v_d =$ $e \ and n _$ $\ of A.$ $\ is called _ _ _$	= 0. then $ u + v ^2 = u ^2 + $ Th Otherwise	- v ² . ne it is				
Q2 Given two vec Q3 A general $m \times n$ in the matrix are ca Q4 A system which inconsistent. Q5 Any set of vec	a_1, \dots, a_n etors $u, v \in \mathbb{R}^n$ which ar n matrix A has $malled theh has aetors containing the$	$v_1 + a_2 v_2 + \dots + a_d v_d =$ $e _ \qquad and n _$ $and n _$ $is called _$ $is line$	= 0. then $ u + v ^2 = u ^2 +$ Th Otherwise hearly dependent	- v ² . ne it is				
 Q2 Given two vec Q3 A general m×n in the matrix are ca Q4 A system which inconsistent. Q5 Any set of vec Q6 If T is a Linear 	a_1 a_2 a_1 a_1 a_2 a_1 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_2 a_1 a_2 a_2 a_1 a_2 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_1 a_2 a_3 a_4 a_4 a_5	$v_1 + a_2 v_2 + \dots + a_d v_d =$ $e _ and n _ $	= 0. then $ u + v ^2 = u ^2 +$ Th Otherwise hearly dependent	- v ² . ne it is				
 Q2 Given two vec Q3 A general m×n in the matrix are ca Q4 A system which inconsistent. Q5 Any set of vec Q6 If T is a Linea 	tors $u, v \in \mathbb{R}^n$ which ar <i>n</i> matrix <i>A</i> has <i>m</i> alled the th has a etors containing the ar transformation then <i>f</i> ssical problems(20pt)	$v_1 + a_2 v_2 + \dots + a_d v_d =$ $e _ and n _ $	= 0. then $ u + v ^2 = u ^2 + $ Th Otherwise hearly dependent rork. No work=No cr	- v ² . ie it is edit				
Q2Given two vecQ3A general $m \times r$ in the matrix are caQ4A system whichinconsistent.Q5Any set of vecQ6If T is a LineaClassQ1Balance the form	tors $u, v \in \mathbb{R}^n$ which ar <i>n</i> matrix <i>A</i> has <i>m</i> alled the th has a etors containing the ar transformation then <i>A</i> ssical problems(20pt pllowing chemical reaction	$v_{1} + a_{2}v_{2} + \dots + a_{d}v_{d} =$ $e _ \qquad and n _ \\ and n _ \\ of A. \\ is called _ \\ is called _ \\ is line $ $T(0) = _ \\ s) . Show all your workson $	= 0. then $ u + v ^2 = u ^2 +$. Th . Otherwise hearly dependent rork. No work=No cr	- v ² . ne it is edit				
Q2 Given two vec Q3 A general $m \times r$ in the matrix are ca Q4 A system which inconsistent. Q5 Any set of vec Q6 If T is a Linea Class Q1 Balance the for	tors $u, v \in \mathbb{R}^n$ which ar <i>n</i> matrix <i>A</i> has <i>m</i> alled the th has a extors containing the ar transformation then <i>A</i> ssical problems(20pt bllowing chemical reaction <i>CC</i>	$v_{1} + a_{2}v_{2} + \dots + a_{d}v_{d} =$ $e _ \qquad and n _ \\ _ of A. \\ _ is called _ \\ _ is line \\ T(0) = _ \\ s) . Show all your work on D_{2} + H_{2}O \rightarrow C_{6}H_{12}O_{6} + C_{6}H_{12}O_{6}O_{6} + C_{6}H_{12}O_{6}O_{6}O_{6}O$	= 0. then $ u + v ^2 = u ^2 + $ Th Otherwise hearly dependent rork. No work=No cr - O_2 .	- v ² . ie it is edit				

(i) is inconsistent;

(ii) has infinitely many solutions;

(iii) has a unique solution.

Q3 Identify the **elementary row** operation performed to obtain the new row-equivalent matrix.

$$\begin{bmatrix} 3 & -1 & | & -4 \\ -4 & 7 & | & 9 \end{bmatrix} \sim \begin{bmatrix} 3 & -1 & | & -4 \\ 8 & 3 & | & -7 \end{bmatrix}$$

Q4 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T\begin{pmatrix} x\\y \end{pmatrix} = \begin{pmatrix} x+y\\x-2y \end{pmatrix}$$

Draw the image of the unit square under T, label all of its vertices.

Q5 Show that the vectors $u = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $v = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ are linearly independent.