

(A) (0,2,3)

2x - y + 3z = 4 are:

(B) x = , y = , z = ,

(A) (0,2,3)

ENGINEERING MATHEMATICS-I SAMPLE FINAL EXAM

(E) None

(E) None

(E) None

April 30, 2017

Name:

(B) (-1,1,2)

(B) (-1,1,2)

Q2 If u = (-2, 1, 1) and v = (1, 0, 1), then $||\text{proj}_v u||$ is

| (B) 1/2

(A) x = 1 + 2t, y = 1 - t, z = -1 + 3t

Multiple	Choice	$(50 \mathrm{pts})$	
munipic	CHOICE	JUPUSI	

Q1 Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear mappting, satisfying T(1,2) = (1,0,1) and T(2,5) = (0,1,1). Find T(0,1).

Q3 Parametric equation for the line passing through (1,1,-1) and which is perpendicular to the plane

(C) $\frac{1}{\sqrt{2}}$

(C) (0,0,1)

(D) (1,0,0)

(D) x = 1 + t, y = 1 - t, z = -1 + 3t

(D) 1

(C)	x = 1 + t, y =	= 1 - t	t, z = -1 + t							
Q4	Let $T: \mathbb{R}^2 \to$	$ ightarrow \mathbb{R}^3$ be	e a linear mappi	ng, sat	tisfying Z	$\Gamma(1,2) = 0$	(1, 0, 1)	1) and $T(2,5) = (0,0)$	(0, 1, 1)	. Find $T(0,1)$.
(A)	(0, 2, 3)		(B) $(-1,1,2)$		(C) $(0,$	(0,1)		(D) $(1,0,0)$		(E) None
Q5	Under what	conditi	on can a vector	(a,b,a)	c) be wri	tten as a	linear	combination of (1	1, 2, 0)	and $(1, 1, 1)$.
(A)	a+b+c = 0		$\begin{array}{cc} \text{(B)} & a+2b+c = \\ & 0 \end{array}$		(C) 2a 0	-b-c =		(D) $a2 + b + 2c = 0$		(E) None
Q6	The angle be	etween	u = (0, 3, -3) as	nd v =	=(-2,2,	-1) is:				
(A)	$\pi/3$		(B) $\pi/6$		(C) $\pi/$	2		(D) $\pi/4$		(E) None
			of the plane which c equations are:					$(1, -7, 8)$ and whice $3 + t; t \in \mathbb{R}$	ch is p	perpendicular to
(A)								(D) $2x - y + z = 11880$		
Q8	Suppose a lir	near sy	stem has augme	ented r	natrix ($\begin{pmatrix} 1 & 1 & 1 \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ p \end{pmatrix}$. I	Find all values of g	p and	q such that this
syste	em has a uniqu					·				

(C) (0,0,1) | (D) (1,0,0)

Q9	Which of the	e follo	wing	functio	ns T :	\mathbb{R}^2 -	$\rightarrow \mathbb{R}^2$	is a lin	ear tra	ansform	nation?					
(A)	$T(x,y) = (x \\ 1)$, y +		(B) T	(x,y)	=	(x +		(C) 7	$\Gamma(x,y)$ (y^2,xy)		=		(D) (E)	T(x, y) None	y) = (x, 0)
Q10	If $A = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -4 \end{pmatrix}$	and 3	$\mathbf{c} = \begin{pmatrix} \mathbf{c} \\ - \end{pmatrix}$	$\left(\frac{5}{7}\right)$, then	hen 🛭	$4\mathbf{x} =$	'				,	•			
(A)	$\begin{pmatrix} 4 \\ 58 \end{pmatrix}$		(B)	$\begin{pmatrix} 2 \\ 51 \end{pmatrix}$			(C)	$\begin{pmatrix} 11 \\ -7 \end{pmatrix}$			(D) ($\begin{pmatrix} 4 \\ 58 \end{pmatrix}$			(E)	None
Q11	Suppose the	at A i	s $3 \times$	4. The	n the	numl	oer of	soluti	ons to	the sys	stem A	$\mathbf{x} = 0$	is			
(A) Q12	infinite Suppose that	at A i	(B) s 2 ×		$\det(2.$		()	two l. Find	$\det(3)$		(D) ze:	ro			(E)	None
(A)		 e of a	(B)		ed gen		(C)), (1,0		(D) 80 and (1,		5:		(E)	None
(A)	$\sqrt{3}$		(B)	3			(C)	-2		((D) 1				(E)	None
Q14	Find all p a	nd q	for wl	nich the	e linea	ır sys	stem •	$\begin{cases} x - \\ x + p \end{cases}$	y = 3 $y = q$	has	infinite	ely ma	ıny so	oluti	ons.	
	p = 2, q = 1							•								3 None
	Compute (d	٠,				'				'				1		
(A)	1		(B)	2			(C)	118		((D) 80				(E)	None
						Tr	ue& i	False(20 pts	s)						
Q1	A consistent T	linea	r syste	em witl	h 2 eq	uatic	ons an	ıd 3 va	riables	must	have in	ıfinitel	y ma	ny s	olutio	ons.
Q2	Homogeneou	s syst	sems a	are alwa	ays co	nsiste	ent.									
Q3	There exists	a line	ear tra	ansform	ation	T th	at ma	aps (1,	0) to ((5, 3, 4)	and m	aps (3	3,0) 1	to (1	, 3, 2)	
Q4	$\operatorname{span}\{(4,3,-1)\}$	1), (2	[1, 1, 8]	$\} = \mathbb{R}^3$			F									
Q5	For all 2×2	matr	ices A	1 and E	B, (A -	$+B)^t$	$\dot{F} = A^{i}$	$x^t + B^t$	$=B^t$	$\vdash A^t$.						
Q6	If A is an m	$\times n$ r	natrix	t, then	rank <i>A</i>	1 + n	ullity. F	A = m								
Q7	If A is an n	$\times n$ m	atrix,	, then o	$\det(A)$	+B)	= de	$\mathrm{d} A + \mathrm{d}$	$\mathrm{let}B$							

Q2 Find the values of a and b such that the following system :

$$\begin{array}{rcl}
x & + & y & = & 2 \\
x & + & 2y & = & 1 \\
3x & + & 5y & + & a & = & b
\end{array}$$

- (i) is inconsistent;
- (ii) has infinitely many solutions;
- (iii) has a unique solution.

Q3 Identify the **elementary row** operation performed to obtain the new row-equivalent matrix.

$$\left[\begin{array}{cc|c} 3 & -1 & -4 \\ -4 & 7 & 9 \end{array}\right] \sim \left[\begin{array}{cc|c} 3 & -1 & -4 \\ 8 & 3 & -7 \end{array}\right]$$

Q4 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} x+y \\ x-2y \end{pmatrix}$$

Draw the image of the unit square under T, label all of its vertices.

Q5 Show that the vectors $u = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $v = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ are linearly independent.

Q6 For any real numbers a, b, c, let $A = \begin{pmatrix} 1 & 2a & 4b \\ -2a & 1 & c \\ -4b & -c & 1 \end{pmatrix}$ and let $B = \begin{pmatrix} 0 & a^2 & b^2 \\ -a^2 & 0 & c^2 \\ -b^2 & -c^2 & 0 \end{pmatrix}$. Determine for

which values of a, b, c, if any, A and B are invertible.

- Q7 Suppose A is an 3×3 matrix such that $A^2 = 7A$.
 - 1. What are the possible eigenvalues of A?
 - **2.** If A is invertible then find A.

Q8 For what value of a the matrix $A = \begin{pmatrix} 1 & a & 0 \\ 0 & 4 & 4 \\ a & 24 & 4 \end{pmatrix}$ is invertible.

Q9 Find the equation of the plane passing through the point (1, 0, -1) and containing the line x = 2 + 2t, y = 3 + t, z = 4 + 3t

Q10 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$, $T\begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$. Find the matrix of T.

Q11 Let $A = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 3 \\ 6 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 3 & 6 \\ 1 & 0 \end{pmatrix}$. Find the matrix X such that $AXC + A = B^tC$.

Q12 Suppose A is a square matrix.

- 1. Define what is meant by an eigenvalue with corresponding eigenvector for the matrix A.
- **2.** Explain or prove why the eigenvalues of A are found by solving the equation $|A \lambda I| = 0$.
- **3.** Suppose A is an invertible matrix. Is it possible for 0 to be an eigenvalue of A? Justify your answer.

Q13 Consider the matrix
$$A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$$
.

- 1. Find the eigenvalues of A.
- 2. Find the corresponding eigenvectors.
- Q14 Show that the function $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by T(x, y, z) = (x y, 2z) is a linear transformation.
- Q15 Show that if A^2 is the zero matrix, then the only eigenvalue of A is 0.

Q16 If
$$\det B = \left| \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \right| = 7$$
 then find the determinant of the If $\det C = \left| \begin{pmatrix} a & b & c \\ 3d & 3e & 3f \\ g & h & i \end{pmatrix} \right|$

Q17 Find the rank and nullity of the matrix
$$A = \begin{pmatrix} 1 & 2 & 1 & -1 \\ 2 & 0 & 3 & 2 \\ 1 & 1 & 1 & -1 \\ -2 & -2 & 1 & 1 \end{pmatrix}$$

Q18 Let
$$A = \begin{pmatrix} 1 & 2 & 1 \\ a & 1 & 0 \\ -2 & -2 & 1 \end{pmatrix}$$
. It is known that $\det A = 1$

- 1. Find a.
- **2.** Find the determinant of $2A^t$.
- 3. Find A^{-1} .

Q19 Does the set of vectors
$$\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 11 \\ 25 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix} \right\}$$
 spans \mathbb{R}^3