

ENGINEERING MATHEMATICS-I
SAMPLE FINAL EXAM
April 30, 2017

Name:

\qquad

Multiple Choice(50pts)

Q1 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear mappting, satisfying $T(1,2)=(1,0,1)$ and $T(2,5)=(0,1,1)$. Find $T(0,1)$.
(A) $(0,2,3)$
(B) $(-1,1,2)$
(C) $(0,0,1)$
(D) $(1,0,0)$
(E) None

Q2 If $u=(-2,1,1)$ and $v=(1,0,1)$, then $\left\|\operatorname{proj}_{v} u\right\|$ is
(A) 0
(B) $1 / 2$
(C) $\frac{1}{\sqrt{2}}$
(D) 1
(E) None

Q3 Parametric equation for the line passing through $(1,1,-1)$ and which is perpendicular to the plane $2 x-y+3 z=4$ are:
(A) $x=1+2 t, y=1-t, z=-1+3 t$
(D) $x=1+t, y=1-t, z=-1+3 t$
(B) $x=, y=, z=$,
(E) None
(C) $x=1+t, y=1-t, z=-1+t$

Q4 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear mapping, satisfying $T(1,2)=(1,0,1)$ and $T(2,5)=(0,1,1)$. Find $T(0,1)$.
(A) $(0,2,3)$
(B) $(-1,1,2)$
(C) $(0,0,1)$
(D) $(1,0,0)$
(E) None

Q5 Under what condition can a vector (a, b, c) be written as a linear combination of $(1,2,0)$ and $(1,1,1)$.
(A) $a+b+c=$
(B) $a+2 b+c=$
0
(C) $2 a-b-c=$

(E) None

Q6 The angle between $u=(0,3,-3)$ and $v=(-2,2,-1)$ is:
(A) $\pi / 3$
(B) $\pi / 6$
(C) $\pi / 2$
(D) $\pi / 4$
(E) None

Q7 Find an equation of the plane which passes through the point $(1,-7,8)$ and which is perpendicular to the line whose parametric equations are: $x=2+2 t, y=7-4 t, z=-3+t ; t \in \mathbb{R}$
(A) $2 x-4 y+$ $z=-38$
(B) $x-4 y+$ $z=8$
(C) $x-4 y+$ $z=-18$
(D) $2 x-y+$ $z=11880$
(E) None

Q8 Suppose a linear system has augmented matrix $\left(\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & q & p\end{array}\right)$. Find all values of p and q such that this system has a unique solution.
(A) $(0,2,3)$
(B) $(-1,1,2)$
(C) $(0,0,1)$
(D) $(1,0,0)$
(E) None

Q9 Which of the following functions $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation?.
(A) $T(x, y)=(x, y+$ 1)
(B) $T(x, y)=(x+$
(C) $T(x, y)=$ $\left(y^{2}, x y\right)$
(D) $T(x, y)=(x, 0)$
(E) None

Q10 If $A=\left(\begin{array}{cc}3 & 2 \\ 5 & -4\end{array}\right)$ and $\mathbf{x}=\binom{6}{-7}$, then $A \mathbf{x}=$
(A) $\binom{4}{58}$
(B) $\binom{2}{51}$
(C) $\binom{11}{-7}$
(D) $\binom{4}{68}$
(E) None

Q11 Suppose that A is 3×4. Then the number of solutions to the system $A \mathbf{x}=\mathbf{0}$ is
(A) infinite
(B) one
(C) two
(D) zero
(E) None

Q12 Suppose that A is 2×2 with $\operatorname{det}\left(2 B B^{t}\right)=64$. Find $\operatorname{det}\left(3 B^{3} B^{t}\right)$.
(A) 1
(B) 8
(C) 118
(D) 80
(E) None

Q13 The volume of a parallelepiped generated by $(1,1,0),(1,0,-1)$ and $(1,1,1)$ is:
(A) $\sqrt{3}$
(B) 3
(C) -2
(D) 1
(E) None

Q14 Find all p and q for which the linear system $\left\{\begin{array}{r}x-y=3 \\ x+p y=q\end{array}\right.$ has infinitely many solutions.
(A) $p=2, q=$ 1
$\begin{aligned} \text { (B) } p & = \\ 1 / 2, q & =\end{aligned}$
(C) $p=2, q=$
(D) $p=1, q=$
3
(E) None

Q15 Compute $\left(\operatorname{det}\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\right)^{2017}$
(A) 1
(B) 2
(C) 118
(D) 80
(E) None

True\& False(20 pts)

Q1 A consistent linear system with 2 equations and 3 variables must have infinitely many solutions. T

F
Q2 Homogeneous systems are always consistent.
T
F
Q3 There exists a linear transformation T that maps $(1,0)$ to $(5,3,4)$ and maps $(3,0)$ to $(1,3,2)$.
T

F
Q4 $\operatorname{span}\{(4,3,-1),(2,1,8)\}=\mathbb{R}^{3}$
T
F
Q5 For all 2×2 matrices A and $B,(A+B)^{t}=A^{t}+B^{t}=B^{t}+A^{t}$.

T

Q6 If A is an $m \times n$ matrix, then $\operatorname{rank} A+\operatorname{nullity} A=m$

T

F
Q7 If A is an $n \times n$ matrix, then $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$

Q8 If A is an $n \times n$ matrix, then $\operatorname{det}\left(\frac{A}{B}\right)=\frac{\operatorname{det} A}{\operatorname{det} B}$

Q9 If A is an $n \times n$ matrix, then $\operatorname{det}(k A)=k \operatorname{det} A$

Q10 If A is invertible matrix, then $\operatorname{det}\left(A^{-1}\right)=\operatorname{det} A$
T
F

Q11 If A is not a invertible matrix, then $A \operatorname{adj} A \neq \operatorname{det} A$
T
F
Q12 if $A=\left[a_{i j}\right]$ is an $n \times n$ triangular matrix, then $\operatorname{det} A=a_{11}+a_{22}+\cdots+a_{n n}$.
T
F
Q13 C is said to be similar to A if there is an invertible matrix B such that $C=B^{-1} A B$. If C is similar to A then $\operatorname{det} A=\operatorname{det} C$

T
Q14 If v_{1}, v_{2}, v_{3} are linearly dependent, then $\operatorname{span}\left\{v_{1}, v_{2}\right\} \neq \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
T
F
Q15 Let $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$. If $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} \neq \mathbb{R}^{3}$, then v_{1}, v_{2}, v_{3} are linearly dependent.
T
F

Fill in the blanks(10pts

Q1 A subset $\left\{v_{1}, \ldots, v_{d}\right\}$ of \mathbb{R}^{n} is \qquad
if there are \qquad $a_{1}, \ldots, a_{d} \in \mathbb{R}$, not all zero, such that

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{d} v_{d}=0
$$

Q2 Given two vectors $u, v \in \mathbb{R}^{n}$ which are \qquad then $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.

Q3 A general $m \times n$ matrix A has m \qquad and n \qquad . The \qquad
in the matrix are called the \qquad of A.
Q4 A system which has a \qquad is called \qquad . Otherwise it is \qquad inconsistent.
Q5 Any set of vectors containing the \qquad is linearly dependent
Q6 If T is a Linear transformation then $T(0)=$ \qquad

Classical problems(20pts) . Show all your work. No work=No credit

Q1 Balance the following chemical reaction

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} .
$$

Find the values of a and b such that the following system :

$$
\begin{aligned}
x+y & =2 \\
x+2 y & =1 \\
3 x+5 y+a & =b
\end{aligned}
$$

(i) is inconsistent;
(ii) has infinitely many solutions;
(iii) has a unique solution.

Q3 Identify the elementary row operation performed to obtain the new row-equivalent matrix.

$$
\left[\begin{array}{rr|r}
3 & -1 & -4 \\
-4 & 7 & 9
\end{array}\right] \sim\left[\begin{array}{rr|r}
3 & -1 & -4 \\
8 & 3 & -7
\end{array}\right]
$$

Q4 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T\left(\binom{x}{y}\right)=\binom{x+y}{x-2 y}
$$

Draw the image of the unit square under T, label all of its vertices.
Q5 Show that the vectors $u=\binom{1}{3}$ and $v=\binom{-1}{1}$ are linearly independent.
Q6 For any real numbers a, b, c, let $A=\left(\begin{array}{ccc}1 & 2 a & 4 b \\ -2 a & 1 & c \\ -4 b & -c & 1\end{array}\right)$ and let $B=\left(\begin{array}{ccc}0 & a^{2} & b^{2} \\ -a^{2} & 0 & c^{2} \\ -b^{2} & -c^{2} & 0\end{array}\right)$. Determine for which values of a, b, c, if any, A and B are invertible.
Q7 Suppose A is an 3×3 matrix such that $A^{2}=7 A$.

1. What are the possible eigenvalues of A ?
2. If A is invertible then find A.

Q8 For what value of a the matrix $A=\left(\begin{array}{ccc}1 & a & 0 \\ 0 & 4 & 4 \\ a & 24 & 4\end{array}\right)$ is invertible.
Q9 Find the equation of the plane passing through the point $(1,0,-1)$ and containing the line $x=2+2 t$, $y=$ $3+t, z=4+3 t$

Q10 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $\left.\left.T\binom{1}{2}\right)=\binom{3}{6}, \quad T\binom{-2}{1}\right)=\binom{4}{-2}$. Find the matrix of T.
Q11 Let $A=\left(\begin{array}{ll}2 & 5 \\ 3 & 4\end{array}\right), B=\left(\begin{array}{cc}1 & 3 \\ 6 & -1\end{array}\right), C=\left(\begin{array}{ll}3 & 6 \\ 1 & 0\end{array}\right)$. Find the matrix X such that $A X C+A=B^{t} C$.

Q12 Suppose A is a square matrix.

1. Define what is meant by an eigenvalue with corresponding eigenvector for the matrix A.
2. Explain or prove why the eigenvalues of A are found by solving the equation $|A-\lambda I|=0$.
3. Suppose A is an invertible matrix. Is it possible for 0 to be an eigenvalue of A ? Justify your answer.

Q13 Consider the matrix $A=\left[\begin{array}{rrr}3 & -1 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 3\end{array}\right]$.

1. Find the eigenvalues of A.
2. Find the corresponding eigenvectors.

Q14 Show that the function $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $T(x, y, z)=(x-y, 2 z)$ is a linear transformation.
Q15 Show that if A^{2} is the zero matrix, then the only eigenvalue of A is 0 .
Q16 If $\operatorname{det} B=\left|\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)\right|=7$ then find the determinant of the If $\operatorname{det} C=\left|\left(\begin{array}{ccc}a & b & c \\ 3 d & 3 e & 3 f \\ g & h & i\end{array}\right)\right|$
Q17 Find the rank and nullity of the matrix $A=\left(\begin{array}{cccc}1 & 2 & 1 & -1 \\ 2 & 0 & 3 & 2 \\ 1 & 1 & 1 & -1 \\ -2 & -2 & 1 & 1\end{array}\right)$
Q18 Let $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ a & 1 & 0 \\ -2 & -2 & 1\end{array}\right)$. It is known that $\operatorname{det} A=1$

1. Find a.
2. Find the determinant of $2 A^{t}$.
3. Find A^{-1}.

Q19 Does the set of vectors $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}11 \\ 25 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 5 \\ 4\end{array}\right)\right\}$ spans \mathbb{R}^{3}

