

Name: \qquad

Be sure to show your work!

11 Find the limit $\lim _{x \rightarrow 0} \frac{\ln (1+x)-2 x^{2}}{e^{x}-1-2 x^{2}}$

2 Find $\frac{d y}{d x}$ if $y=e^{\sin x} \tan x$

3 Let $f(x)=\frac{2+\ln x^{2}}{x}$.

1. Find the open interval(s) on which f is increasing, and the open interval(s) on which f is decreasing.
2. Find all the critical points of f and determine if they are maximum or minimum points

44 Let $y=\frac{\cos \pi \sqrt{x}}{1+x^{2}}$. Find the slope of the tangent line to the graph at the point $(x, y)=(1,-1 / 2)$.

5 Evaluate $\int_{0}^{1} \frac{e^{x}}{e^{x}+1} d x$

6 Let A be the area of the region in the $x y$-plane bounded by the curves $y=1$ and $y=\ln x$ on the interval $1 \leq x \leq e$.

1. Write down two integrals, one with respect to x and one with respect to y, that both give the value of A.
2. Find the value of A

7 Find $\int e^{x} \cos x d x$

The graphs of functions f is shown at right. Evaluate $\int_{-1}^{3}\left(x^{2}-2 x\right) d x$ and interpret the result in terms of areas (A, B, C).

9 Compute $\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \cos t^{2} d t}{x}$.

10

1. State the Mean Value Theorem for Derivatives
2. Find all possible values c satisfying the conclusion of the Mean Value Theorem for $f(x)=x^{3}+x^{2}-x+2$ on the interval $[0,1]$.

11 Find the area between the graphs of $y=4 x$ and $y=x^{3}$ over the interval $[-2,2]$

