

1 Find the limit $\lim_{x \to 0} \frac{\ln(1+x) - 2x^2}{e^x - 1 - 2x^2}$

2 Find $\frac{dy}{dx}$ if $y = e^{\sin x} \tan x$

3 Let
$$f(x) = \frac{2 + \ln x^2}{x}$$
.

1. Find the open interval(s) on which f is increasing, and the open interval(s) on which f is decreasing.

2. Find all the critical points of f and determine if they are maximum or minimum points

4 Let $y = \frac{\cos \pi \sqrt{x}}{1+x^2}$. Find the slope of the tangent line to the graph at the point (x, y) = (1, -1/2).

5 Evaluate
$$\int_0^1 \frac{e^x}{e^x + 1} dx$$

6 Let A be the area of the region in the xy-plane bounded by the curves y = 1 and $y = \ln x$ on the interval $1 \le x \le e$.

- 1. Write down two integrals, one with respect to x and one with respect to y, that both give the value of A.
- 2. Find the value of A

7 Find $\int e^x \cos x dx$

8

The graphs of functions f is shown at right. Evaluate $\int_{-1}^{3} (x^2 - 2x) dx$ and interpret the result in terms of areas (A, B, C).

9 Compute
$$\lim_{x \to 0} \frac{\int_0^x \cos t^2 dt}{x}$$
.

10

- 1. State the Mean Value Theorem for Derivatives
- 2. Find all possible values c satisfying the conclusion of the Mean Value Theorem for $f(x) = x^3 + x^2 x + 2$ on the interval [0, 1].

11 Find the area between the graphs of y = 4x and $y = x^3$ over the interval [-2, 2]