

ENGINEERING MATHEMATICS-I SAMPLE MIDTERM EXAM

April 30, 2017

Name: _____

Multiple C	Choice(50 pts)		
Q1 Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear mapping, satisfyin	g $T(1,2) = (1,0,1)$) and $T(2,5) = (0,1)$	(0, 1, 1). Find $T(0, 1)$.
(A) $(0,2,3)$ (B) $(-1,1,2)$ (C) (0, 0, 1)	(D) $(1,0,0)$	(E) None
Q2 If $u = (-2, 1, 1)$ and $v = (1, 0, 1)$, then $ \text{proj}_v u $	is		
(A) 0 (B) $1/2$ (C) $\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	(D) 1	(E) None
Q3 Parametric equation for the line passing through $2x - y + 3z = 4$ are:	(1, 1, -1) and	l which is perpen	dicular to the plane
(A) $x = 1 + 2t, y = 1 - t, z = -1 + 3t$	(D) $x = 1$ -	+t, y = 1-t, z =	-1 + 3t
(B) $x =, y =, z =,$	(E) None		
(C) $x = 1 + t, y = 1 - t, z = -1 + t$			
Q4 Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear mapping, satisfying	T(1,2) = (1,0,1)) and $T(2,5) = (0, -1)$	(1,1). Find $T(0,1)$.
(A) $(0,2,3)$ (B) $(-1,1,2)$ (C) (0, 0, 1)	(D) $(1,0,0)$	(E) None
Q5 Under what condition can a vector (a, b, c) be w	ritten as a linear	combination of (1	(2,0) and $(1,1,1)$.
(A) $a+b+c = (B) a+2b+c = (C) 2 0 (C) 2 0 (C) 2 (C)$	a-b-c =	(D) $a2 + b + 2c = 0$	(E) None
Q6 The angle between $u = (0, 3, -3)$ and $v = (-2, 2)$	(2, -1) is:		
(A) $\pi/3$ (B) $\pi/6$ (C) π	/2	(D) $\pi/4$	(E) None
Q7 Find an equation of the plane which passes the the line whose parametric equations are: $x = 2 + 2t$,	ough the point (1) y = 7 - 4t, z = -3	(1, -7, 8) and which $(3 + t; t \in \mathbb{R})$	h is perpendicular to
(A) $2x - 4y + (B) x - 4y + (C) x = -38$ (C) $x = 8$	x - 4y + y = -18	(D) $2x - y + z = 11880$	(E) None
Q8 Suppose a linear system has augmented matrix	$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & q & p \end{pmatrix} . F$	ind all values of p) and q such that this
system has a unique solution.	× 1 1 /		

(A) (0,2,3) | (B) (-1,1,2) | (C) (0,0,1) | (D) (1,0,0) | (E) None

Q9 Which of the following functions $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation?. (A) T(x,y) = (x,y+1)(B) T(x,y) = (x+1)(C) T(x,y) = (x,0) (y^2,xy) (E) None **Q10** If $A = \begin{pmatrix} 3 & 2 \\ 5 & -4 \end{pmatrix}$ and $\mathbf{x} = \begin{pmatrix} 6 \\ -7 \end{pmatrix}$, then $A\mathbf{x} =$ (A) $\begin{pmatrix} 4\\58 \end{pmatrix}$ (B) $\begin{pmatrix} 2\\51 \end{pmatrix}$ (C) $\begin{pmatrix} 11\\-7 \end{pmatrix}$ (D) $\begin{pmatrix} 4\\68 \end{pmatrix}$ (E) None Q11 Suppose that A is 3×4 . Then the number of solutions to the system $A\mathbf{x} = \mathbf{0}$ is (A) infinite (C) two (D) zero (B) one (E) None Q12 Suppose that A is 2×2 with $det(2BB^t) = 64$. Find $det(3B^3B^t)$. (B) 8(C) 118 (D) 80 (E) None (A) 1The volume of a parallelepiped generated by (1, 1, 0), (1, 0, -1) and (1, 1, 1) is: Q13 (C) -2 (E) None (A) $\sqrt{3}$ (B) 3 (D) 13 (E) None Q15 Compute $\left(\det \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\right)^{2017}$ (E) None (A) 1(B) 2(C) 118 (D) 80 True False (20 pts) A consistent linear system with 2 equations and 3 variables must have infinitely many solutions. Q1 Т F Q2Homogeneous systems are always consistent. F Т There exists a linear transformation T that maps (1,0) to (5,3,4) and maps (3,0) to (1,3,2). Q3 Т F Q4 span{(4, 3, -1), (2, 1, 8)} = \mathbb{R}^3 F Q5 For all 2×2 matrices A and B, $(A+B)^t = A^t + B^t = B^t + A^t$. Т Q6If A is an $m \times n$ matrix, then rankA + nullityA = mТ F Q7If A is an $n \times n$ matrix, then $\det(A + B) = \det A + \det B$ F Т

Q8 If A is an $n \times n$ matrix, then $det(\frac{A}{B}) = \frac{detA}{detB}$ T
Q9 If A is an $n \times n$ matrix, then $det(kA) = kdetA$ T
Q10 If A is invertible matrix, then $det(A^{-1}) = detA$ T
Q11 If A is not a invertible matrix, then $AadjA \neq detA$ T
Q12 if $A = [a_{ij}]$ is an $n \times n$ triangular matrix, then det $A = a_{11} + a_{22} + \dots + a_{nn}$. T
Q13 C is said to be <i>similar</i> to A if there is an invertible matrix B such that $C = B^{-1}AB$. If C is similar to A then det $A = \det C$ T
Q14 If v_1, v_2, v_3 are linearly dependent, then span $\{v_1, v_2\} \neq \text{span}\{v_1, v_2, v_3\}$. T
O15 Let $v_1, v_2, v_3 \in \mathbb{R}^3$ If span $\{v_1, v_2, v_3\} \neq \mathbb{R}^3$ then v_1, v_2, v_3 are linearly dependent
\mathbf{T}
\mathbf{F} Fill in the blanks(10pts
T F Fill in the blanks(10pts Q1 A subset $\{v_1, \dots, v_d\}$ of \mathbb{R}^n is
Iter $v_1, v_2, v_3 \in \mathbb{R}$ In span $\{v_1, v_2, v_3\} \neq \mathbb{R}$, when v_1, v_2, v_3 are inlearly dependent. F Fill in the blanks(10pts Q1 A subset $\{v_1, \dots, v_d\}$ of \mathbb{R}^n is
Identify the pendent. F Fill in the blanks(10pts Q1 A subset $\{v_1, \ldots, v_d\}$ of \mathbb{R}^n is
TFFFill in the blanks(10ptsQ1 A subset $\{v_1, \ldots, v_d\}$ of \mathbb{R}^n isif there are $a_1, \ldots, a_d \in \mathbb{R}$, not all zero, such that $a_1v_1 + a_2v_2 + \cdots + a_dv_d = 0$.Q2 Given two vectors $u, v \in \mathbb{R}^n$ which are then $ u + v ^2 = u ^2 + v ^2$.Q3 A general $m \times n$ matrix A has m and n The
Fill in the blanks(10pts Q1 A subset $\{v_1, \dots, v_d\}$ of \mathbb{R}^n is
Fill in the blanks(10pts Q1 A subset $\{v_1, \ldots, v_d\}$ of \mathbb{R}^n is
Image: Terminal problem is the second se
Image: The set of the set o
Image: Terminal problem of the second se
Fill in the blanks(10pts Q1 A subset $\{v_1, \dots, v_d\}$ of \mathbb{R}^n is
Image: Term of the second system is the span of the system is the system. Q5 Any set of vectors containing the system is the system. Q5 Any set of vectors containing the system is the syst
Image: Second systemImage: Second system

Q11

Q12 A linear equation is ______ if it is of the form $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$. Q13 The matrix

$$A = \left(\begin{array}{ccc} (1) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & (1) & 0 \end{array}\right)$$

has rank 2. There are two_____ columns.

Classical problems(20pts) . Show all your work. No work=No credit

Q1 Balance the following chemical reaction

$$CO_2 + H_2O \to C_6H_{12}O_6 + O_2.$$

Q2 Find the values of a and b such that the following system :

- (i) is inconsistent;
- (ii) has infinitely many solutions;
- (iii) has a unique solution.

Q3 Identify the **elementary row** operation performed to obtain the new row-equivalent matrix.

$$\begin{bmatrix} 3 & -1 & | & -4 \\ -4 & 7 & | & 9 \end{bmatrix} \sim \begin{bmatrix} 3 & -1 & | & -4 \\ 8 & 3 & | & -7 \end{bmatrix}$$

Q4 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T\begin{pmatrix} x\\y \end{pmatrix} = \begin{pmatrix} x+y\\x-2y \end{pmatrix}$$

Draw the image of the unit square under T, label all of its vertices.

Q5 Show that the vectors
$$u = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 and $v = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ are linearly independent.
Q6 For any real numbers a, b, c , let $A = \begin{pmatrix} 1 & 2a & 4b \\ -2a & 1 & c \\ -4b & -c & 1 \end{pmatrix}$ and let $B = \begin{pmatrix} 0 & a^2 & b^2 \\ -a^2 & 0 & c^2 \\ -b^2 & -c^2 & 0 \end{pmatrix}$. Determine for which values of a, b, c if any A and B are invertible

which values of a, b, c, if any, A and B are invertible.

Q7 Suppose A is an 3×3 matrix such that $A^2 = 7A$.

- **1.** What are the possible eigenvalues of A?
- **2.** If A is invertible then find A.

Q8 For what value of *a* the matrix $A = \begin{pmatrix} 1 & a & 0 \\ 0 & 4 & 4 \\ a & 24 & 4 \end{pmatrix}$ is invertible.

Q9 Find the equation of the plane passing through the point (1, 0, -1) and containing the line x = 2 + 2t, y = 3 + t, z = 4 + 3t

Q12 Suppose A is a square matrix.

- 1. Define what is meant by an eigenvalue with corresponding eigenvector for the matrix A.
- **2.** Explain or prove why the eigenvalues of A are found by solving the equation $|A \lambda I| = 0$.
- **3.** Suppose A is an invertible matrix. Is it possible for 0 to be an eigenvalue of A? Justify your answer.

Q13 Consider the matrix
$$A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$$
.

- **1.** Find the eigenvalues of *A*.
- 2. Find the corresponding eigenvectors.

Q14 Show that the function $T : \mathbb{R}^3 \to \mathbb{R}^2$ given by T(x, y, z) = (x - y, 2z) is a linear transformation. Q15 Show that if A^2 is the zero matrix, then the only eigenvalue of A is 0.

Q16 If det $B = \left| \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \right| = 7$ then find the determinant of the If det $C = \left| \begin{pmatrix} a & b & c \\ 3d & 3e & 3f \\ g & h & i \end{pmatrix} \right|$ Q17 Find the rank and nullity of the matrix $A = \begin{pmatrix} 1 & 2 & 1 & -1 \\ 2 & 0 & 3 & 2 \\ 1 & 1 & 1 & -1 \\ -2 & -2 & 1 & 1 \end{pmatrix}$

Q18 Let
$$A = \begin{pmatrix} 1 & 2 & 1 \\ a & 1 & 0 \\ -2 & -2 & 1 \end{pmatrix}$$
. It is known that det $A = 1$

- **1.** Find *a*.
- **2.** Find the determinant of $2A^t$.
- **3.** Find A^{-1} .

Q19 Does the set of vectors $\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 11\\25\\3 \end{pmatrix}, \begin{pmatrix} 2\\5\\4 \end{pmatrix} \right\}$ spans \mathbb{R}^3 Q20 Find the rank of the matrix $A = \begin{pmatrix} 1 & -2 & 3 & 9\\ -1 & 3 & 0 & -4\\ 2 & -5 & 5 & 17 \end{pmatrix}$ Q21 Does the set $\left\{ \vec{v}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$ span \mathbb{R}^3 Q22 Let $\vec{v}_1 = \begin{pmatrix} 1\\0\\-2 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} -3\\1\\8 \end{pmatrix}, \vec{b} = \begin{pmatrix} h\\-5\\-3 \end{pmatrix}$. For what value(s) of h is \vec{b} in the plane generated by v_1 and v_2 ? Q23 For what values of h is the set $T = {\vec{w}_1, \vec{w}_2, \vec{w}_3}$ of the vectors

$$\vec{w}_1 = (1, -1, 1)$$
 $\vec{w}_2 = (0, 1, 2)$ $\vec{w}_3 = (2, 3, h)$

linearly dependent?

Q24 Find an equation involving a, b, and c so that the following augmented matrix $\begin{pmatrix} 1 & -4 & 7 & a \\ 0 & 3 & -5 & b \\ -2 & 5 & -9 & c \end{pmatrix}$

correspond to a consistent system.

Q25 Write an equation system that is equivalent to the vector equation:

$$x_1 \begin{pmatrix} 3\\-2 \end{pmatrix} + x_2 \begin{pmatrix} 7\\3 \end{pmatrix} + x_3 \begin{pmatrix} -2\\1 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$$

Q26 Let $\mathbf{u} = (0, 4, 4)$ and $A = \begin{pmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{pmatrix}$ Is \mathbf{u} in the plane spanned by the columns of A? Why or why

not?

Q27 Could a set of 4 vectors in \mathbb{R}^5 span all of \mathbb{R}^5 ? Explain.