

ENG227 ENGINEERING MATHEMATICS MIDTERM EXAM

April 4, 2017

Name: \qquad

1. Specify the type of the differential equation : $\left(1+x^{2}\right) d y=\left(x+x y^{2}\right) d x$ and find the general solution. Show your work in detail.
2. Specify the type of the differential equation : $(\sin x) y^{\prime}+(\cos x) y=\ln x$ and find the general solution. Show your work in detail.
3. Make a suitable change of variable and find the general solution of $\frac{d y}{d x}=\frac{x+y+1}{x+y-1}$.
4. Specify the type of the differential equation : $x \frac{d y}{d x}+y=x^{2} y^{2}$ and find the general solution. Show your work in detail.
5. Determine whether or not the differential equation : $\left(e^{x} \sin y-2 y \sin x\right)+\left(e^{x} \cos y+2 \cos x\right) y^{\prime}=0$ is exact. Solve it.
6. Specify the type of the differential equation $y^{\prime}=1+(y / x)+(y / x)^{2}$ and find the general solution. Show your work in detail.
7. Solve initial value problem

$$
\begin{aligned}
y^{\prime} & =\frac{y x^{5}}{2+x^{6}} \\
y(1) & =1
\end{aligned}
$$

8. Consider the differential equation $(2 x+3)+(2 y-2) y^{\prime}=0$. Determine whether this equation is exact or not. If it is, solve it.
9. Consider the differential equation $\left(y e^{2 x y}+x\right)+a x e^{2 x y} y^{\prime}=0$. Determine for which value of a this equation is exact, and then solve it with this value of a.
10. Consider the differential equation $\left(y e^{2 x y}+x\right)+a x e^{2 x y} y^{\prime}=0$. Determine for which value of a this equation is exact, and then solve it with this value of a.
11. Consider the differential equation $\left(2 x y-y^{3}\right)+\left(x^{2}-3 x y^{2}\right) y^{\prime}=0$. Determine whether this equation is exact or not. If it is, solve it.
12. Specify the type of the differential equation : $\frac{d y}{d x}+x y=x e^{-x^{2}} y^{-3}$ and find the general solution. Show your work in detail.
13. Specify the type of the differential equation :

$$
\begin{aligned}
y^{\prime} & =y(1-y) \\
y(0) & =1 / 2
\end{aligned}
$$

and find the general solution. Show your work in detail.
14. Specify the type of the differential equation : $y^{\prime}+2 y=\cos (3 x)$ and find the general solution. Show your work in detail.
15. On what interval we expect unique solutions to

$$
\begin{aligned}
y^{\prime} & =\frac{y^{2}}{1-x^{2}} \\
y(0) & =0
\end{aligned}
$$

Show your work in detail.
16. Specify the type of the differential equation : $y^{\prime}=x e^{x^{2}-l n y^{2}}$ and find the general solution. Show your work in detail.
17. Find the differential equation of all circles of radius 1
18. Show that the function

1. $y=C_{1} \sin (\pi x)+C_{2} \cos (\pi x)$, where C_{1} and C_{2} are constants, is a solution of the differential equation: $y^{\prime \prime}+\pi^{2} y=0$.
2. Solve the initial value problem:

$$
y^{\prime \prime}+\pi^{2} y=0, \quad y(0)=1, y^{\prime}(0)=-1
$$

