Name:	Mathematical Analysis I/ Sample Final Exam Fall 20					
out of sight. The exa	all devices capable of commu am lasts for 1 hour and 45 VITH AN X, not a circle!	inication turned off and min. PLEASE MARK	Q7 Let $f(x) = x \ln x$. Find the intervals where $f(x)$ is concave downward.			
			(A) $f(x)$ is not	(B) $(0,1)$	(D) $(0,\infty)$	
Q1 Let $F(x) = \int_{1}^{x} f(x) dx$	$\sqrt{2t^2 - 3t + 1}$. Find $F'(3)$. (C) -1 (D) 0		concave down- ward any-	(C) $(0, e)$	(E) None	
(A) 10	(C) -1	(E) None	where.			
(B) 15	(D) 0				tive $h'(x) = x^2 + 4$. Find	
Q2 What is the average of the function $h(t) = t^3 + 1$ on the interval $[1, 4]$?			(A) 0	erval [-1,3] where $h(x)$ t (C) 2 (D) 4 it $\lim_{n \to \infty} \frac{2+4+6\cdots+2n}{n^2}$ (C) 1.5 (D) 1	(E) None	
(A) -5	(C) $267/12$	(E) None	(B) -1	(D) 4		
(B) 260/9	(C) 267/12 (D) 211/13		Q9 Evaluate the lim	it $\lim_{n \to \infty} \frac{2+4+6\cdots+2r}{r^2}$	<u>1</u>	
Q3 Given that the area of the ellipse $4x^2 + y^2 = 4$ is 2π , evaluate			(A) 2	$ \begin{array}{c} n \to \infty \\ (C) & 1.5 \end{array} $	(E) None	
the integral $\int_0^1 \sqrt{4-4x^2} dx$ (Hint: Think of the definite integral as an			(B) 3	(D) 1		
area.) \int_0^{1}			Q10 Evaluate the integral $\int_{-4}^{8} x dx$			
,	(C) π (D) 1	(E) None	(A) 24 (B) 38	(C) 40	(E) None	
(B) $\pi/2$	(D) 1		(B) 38	(D) 48		
Q4 Suppose that $f = g \circ h + h \circ g$, $g(0) = 1$, $h(0) = 2$, $g'(0) = 3$, $g'(2) = 5$, $h'(0) = 6$, $h'(1) = 7$ then $f'(0) = 6$			Q11 Given the function $f(x) = x^2$, which value of c satisfies the conclusion of the Mean Value Theorem on the interval $[-4, 5]$?			
		(E) None	(A) $1/2$	(C) 3	(E) None	
(B) 55	(C) 61 (D) 20		(B) 2	(C) 3 (D) 4		
Q5 Evaluate the limit $\lim_{x \to 0} \frac{e^x - 1 - x}{2x^2}$						
(A) -2	$\begin{vmatrix} x \to 0 & 2x^2 \\ (C) & 0 \end{vmatrix}$	(E) None			y	
(B) -1	(D) 1/4		Q12 A rectangle in its base on the x -axi		\square	
Q6Find the minimum value of $f(x) = x^3 - 3x + 3$ on the interval $[-2, 4].$ (A) -5 (C) 1(E) None			corners on the curve $y = -x^2 + 3$. Find the largest possible area for such a rectangle.			
	(C) 1		(A) 4	(C) 2.5	(E) None	
(B) -1	(D) 3					
			(B) 3	(D) 2	I	

1

Student ID Number:

Name:	Mathematical Analysis I/ Sample Final Exam				
Q13 Consider the function $f(x) = x^2 + 5x + 5$	$\frac{-6}{-}$. Which of the following	(A) 1 (C) 2	(E) None		
statements describes the asymptotes of $f(x)$		(B) 1.5 (D) 5/2			
HA: Horizontal asymptote)	1	Q19 Find the limit $\lim_{x \to 0} (1+3x)^{\frac{1}{x}}$			
(A) VA: $x = \pm 2$, HA: $y = 1$. (B) VA: $x = 2$, (C) VA: $x = \pm 2$, HA: $y = x$.	(D) VA: $x = 2$,	(A) e^3 (B) $3e$ (C) e^{-2} (D) 2.71	(E) None		
HA: $y = 1$. (C) VA: $x = \pm 2$,	HA: y = 1.	(B) 3e (D) 2.71			
Q14 Find the linear approximation $L(x)$ to	. –	Q20 The graph of the function f is shown $y = f(r)$			
(A) $x + \frac{\pi}{3}$ (B) $x + \frac{\pi}{2}$ (C) $-x + \frac{\pi}{2}$ (D) $x + \frac{\pi}{3}$	(E) None	right . Find the integral:	y = f(x)		
(B) $x + \frac{\pi}{2}$ (D) $x + \frac{\pi}{3}$		c6 c7			
Q15 Suppose $f(t)$ is continuous on [1,7] with	th $f(1) = 1$ and $(7) = 49$.	$\int_{1}^{6} f(x)dx + \int_{1}^{7} f^{-1}(x)dx$			
Find $\frac{d}{dt} \left[\int_{-t}^{t} f(t) dt \right]$			1		
(A) $2^{at \cup J_1}$ (C) 48	(E) None	(A) 38 (C) 41 (E) (B) 39 (D) 42 None	$\xrightarrow{1} \qquad 6 \qquad x$		
Find $\frac{d}{dt} \left[\int_{1}^{7} f(t) dt \right]$ (A) 2 (C) 48 (B) 24 (D) 0					
		Fill in the Blank Questio	${ m ons}(10~{ m pts})$		
Q16 Let $f(x)$ be an even function contin-	$y \qquad y = f(x)$	Q1 The quantity $ y - x $ is called the	between		
uous on its domain $(-\infty, \infty)$. The figure		Q1 The quantity $ y - x $ is called the between and			
below shows the areas of regions bounded b_{1}	$1 \leftarrow Area=15$				
by the graph of $f(x)$ and the x - axis for x	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q2 A function associates with each member of its precisely one member of its			
in the interval [0, 6]. Find $\int_{-6}^{6} 2f(x)dx$.	Area=18	precisely one member	OI 1ts		
$\begin{array}{c cccc} (A) & -12 & & & (C) & -6 \\ (B) & -10 & & & (D) & 10 \end{array}$	(E) None	Q3 Suppose that f is	on $[a, b]$ and f is		
(B) -10 (D) 10		$\frac{1}{1} \text{on } (a, b) \text{ Then}$ in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.	there exists a constant		
Q17 Find all possible functions with the g	ven derivative $y' = \frac{9x}{5\sqrt{7}}$	in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.			
(A) $9x^{9/5} + C$ (C) $5x^{9/4} + C$	(E) None $\sqrt[v]{x}$				
Q17 Find all possible functions with the g (A) $9x^{9/5} + C$ (C) $5x^{9/4} + C$ (B) $5x^{9/5} + C$ (D) $6x^{9/5} + C$		Q4 The equation of the y = f(x) at the point $x = a$ is given by $y = a$	to the curve $-f(a) = f'(a)(x-a)$		
Q18 $f: (1.5, 9) \to \mathbb{R}, f(x^2 - 2) = 3x^2 - 2x$		Q5 $F(x)$ is an			

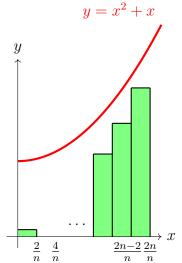
Tuesday 26^{th} December, 2017 08:57

Name:

True/False Questions(10 pts) . No justifications are needed.

Q1 If f(x) is continuous on [a, b] and if f(b) = f(a) then f(x) must have a zero in [a, b]. T

Q2 If f is constant 1 then $\int_{a}^{b} f(x)dx$ is the length of the interval [a, b]. T Q3 If f'(x) = g'(x), then f(x) = g(x). T F


Q4 The fundamental theorem of calculus implies that $\int_0^3 f''(x)dx = f'(3) - f(0)$.

Q5 If f(x) is smaller than g(x) for all x, then $\int_0^1 f(x) - g(x)dx$ is negative. T

Q6 If f is discontinuous at 0, then
$$\int_{-1}^{1} f(x)dx$$
 is infinite.
T
F
Q7 If $x(t) + y(t) = 10$ is constant and $x'(t) = 3$ then $y'(t) = -3$
T
Q8 If a differentiable function f has a critical point at 1, then the function $F(x) = \int_{0}^{x} f(t)dt$ has an inflection point at 1.
T
F

Q9 The acceleration is the anti-derivative of the velocity. T FQ10 If f is concave up on [0, 1] and concave down on [1, 2] then 1 is an inflection points. T F Q1 Compute the definite integral $\int_{0}^{2} (x+x^{2}) dx$ as the limit of a **right Riemann sum**.

Show all your work. No work=No credit (40 pts).

(a) $\Delta x =$

(b) Right endpoint of the k-th subinterval, $x_k =$

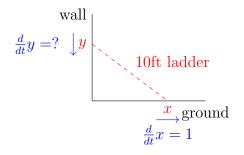
- (c) Height of the k-th rectangle: $f(x_k) =$
- (d) Find the area of the k-th rectangle: $A_k = f(x_k)\Delta x =$

(e) Sum of the areas of the n rectangles: $\sum_{k=1}^{n} A_k =$

Name:

Fall 2016

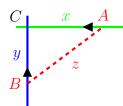
(f) Find the limit: $\lim_{n\to\infty}\sum_{k=1}^n A_k =$

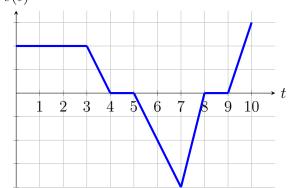

Q2 Let $f(x) = 2\tan x$.

- Find the linear approximation L(x) of $f(x) = 2 \tan x$ at $x = \pi$.
- Use linear approximation L(x) to approximate $2 \tan(3.3)$.

Q3 Find $\lim_{x \to \frac{\pi}{2}^{-}} (\tan x - \sec x)$

Q4 Find two positive numbers x and y such that x + y = 60 and xy^3 is maximum.


Q5 A ladder of length 10ft rests against a vertical wall. The bottom of the ladder slides away from the wall with 1ft/s How fast is the top sliding when the bottom is 6ft from the wall?


Q6 Two cars are headed for the same road intersection:

- car A is traveling west with 50mi/h
- car B is traveling north with 60mi/h

At what rate are the cars approaching when A is 0.3mi and B is 0.4mi from the intersection?

Q7 The figure below shows the velocity v(t) of a particle moving on a horizontal coordinate line, for t in a closed interval [0, 10]. v(t)

Fill in the following blanks. Use interval notation where appropriate.

•	The	particle	is	mov	ving	forward		during:
•	The	particle's	spe	ed	is	incr	easing	during:
•	The	particle	has	positi	ve	accel	eration	during:
•	The	particle	has	zero)	accele	eration	during:
•	The	particle	achieve	s it	s	greate	st sp	peed at:
•	The	particle stand	s still	for m	ore	than a	n insta	ant during:
Q8 Evaluate the limit: $\lim_{n \to \infty} \sum_{i=1}^{n} e^{i\frac{4}{n}} \frac{4}{n}$.								