Instructions: Keep all devices capable of communication turned off and out of sight. The exam lasts for 1 hour and 45 min . PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

Q1 Let $F(x)=\int_{1}^{x} \sqrt{2 t^{2}-3 t+1}$. Find $F^{\prime}(3)$.
(A) 10
(C) -1
(E) None
(B) 15
(D) 0

Q2 What is the average of the function $h(t)=t^{3}+1$ on the interval $[1,4]$?
(A) -5
(C) $267 / 12$
(E) None
(B) $260 / 9$
(D) $211 / 13$

Q3 Given that the area of the ellipse $4 x^{2}+y^{2}=4$ is 2π, evaluate the integral $\int_{0}^{1} \sqrt{4-4 x^{2}} d x$ (Hint: Think of the definite integral as an area.)
(A) $-\pi$
(C) π
(E) None
(B) $\pi / 2$
(D) 1

Q7 Let $f(x)=x \ln x$. Find the intervals where $f(x)$ is concave downward.
(A) $f(x)$ is not
(B) $(0,1)$ concave down-
(D) $(0, \infty$ ward any-
(C) $(0, e)$ where.
Q8 Suppose that a function $h(x)$ has derivative $h^{\prime}(x)=x^{2}+4$. Find the x value in the interval $[-1,3]$ where $h(x)$ takes its minimum.
(A) 0
(C) 2
(E) None
(B) -1
(D) 4
(E) None

Q9 Evaluate the limit $\lim _{n \rightarrow \infty} \frac{2+4+6 \cdots+2 n}{n^{2}}$
(A) 2
(C) 1.5
(E) None
(B) 3
(D) 1

Q10 Evaluate the integral $\int_{-4}^{8}|x| d x$
(A) 24
(C) 40
(B) 38
(D) 48
(E) None

Q11 Given the function $f(x)=x^{2}$, which value of c satisfies the conclusion of the Mean Value Theorem on the interval $[-4,5]$?
(A) $1 / 2$
(C) 3
(B) 2
(D) 4
(E) None

A rectangle in the (x, y)-plane has its base on the x-axis and its upper two corners on the curve $y=-x^{2}+3$. Find the largest possible area for such a rectangle.
(A) 4
(C) 2.5
(B) 3
(D) 2

(E) None

Q13 Consider the function $f(x)=\frac{x^{2}+5 x+6}{x^{2}-4}$. Which of the following statements describes the asymptotes of $f(x)$? (VA:Vertical asymptote, HA: Horizontal asymptote)
(A) VA: $x= \pm 2$,
$\mathrm{HA}: y=1$.
HA: $y=x$.
(C) VA: $x= \pm 2$,
(D) VA: $x=2$, HA: $y=1$.
(B) VA: $x=2$,

$$
\mathrm{HA}: y=x
$$

(E) None

Q14 Find the linear approximation $L(x)$ to $f(x)=\cos x$ at $a=\frac{\pi}{2}$.
(A) $x+\frac{\pi}{3}$
(C) $-x+\frac{\pi}{2}$
(E) None
(B) $x+\frac{\pi}{2}$
(D) $x+\frac{\pi}{3}$

Q15 Suppose $f(t)$ is continuous on $[1,7]$ with $f(1)=1$ and $(7)=49$.
Find $\frac{d}{d t}\left[\int_{1}^{7} f(t) d t\right]$
(A) 2
(C) 48
(E) None
(B) 24
(D) 0

Q16 Let $f(x)$ be an even function continuous on its domain $(-\infty, \infty)$. The figure below shows the areas of regions bounded by the graph of $f(x)$ and the $x-$ axis for x in the interval $[0,6]$. Find $\int_{-6}^{6} 2 f(x) d x$.

(A) -12
(C) -6
(E) None
(B) -10
(D) 10

Q17 Find all possible functions with the given derivative $y^{\prime}=\frac{9 x}{\sqrt[5]{x}}$
(A) $9 x^{9 / 5}+C$
(C) $5 x^{9 / 4}+C$
(E) None
(B) $5 x^{9 / 5}+C$
(D) $6 x^{9 / 5}+C$

Q18 $f:(1.5,9) \rightarrow \mathbb{R}, f\left(x^{2}-2\right)=3 x^{2}-2 x+2$. Then find $f^{\prime}(6)$.
(A) 1
(C) 2
(B) 1.5
(D) $5 / 2$
(E) None

Q19 Find the limit $\lim _{x \rightarrow 0}(1+3 x)^{\frac{1}{x}}$
(A) e^{3}
(C) e^{-2}
(B) $3 e$
(D) 2.71
(E) None

Q20 The graph of the function f is shown right. Find the integral:
$\int_{1}^{6} f(x) d x+\int_{1}^{7} f^{-1}(x) d x$
(A) 38
(C) 41
(B) 39
(D) 42
(E)
None

Fill in the Blank Questions(10 pts)

Q1 The quantity $|y-x|$ is called the \qquad between
\qquad and \qquad -

Q2 A function associates with each member of its _ precisely one member of its \qquad

Q3 Suppose that f is \qquad on $[a, b]$ and f is
\qquad on (a, b). Then there exists a constant \qquad
in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Q4 The equation of the \qquad to the curve $y=f(x)$ at the point $x=a$ is given by $y-f(a)=f^{\prime}(a)(x-a)$

Q5 $F(x)$ is an \qquad of $f(x)$ if $F^{\prime}(x)=f(x)$.

Q1 If $f(x)$ is continuous on $[a, b]$ and if $f(b)=f(a)$ then $f(x)$ must have a zero in $[a, b]$.
F

Q2 If f is constant 1 then $\int_{a}^{b} f(x) d x$ is the length of the interval $[a, b]$. T \square
Q3 If $f^{\prime}(x)=g^{\prime}(x)$, then $f(x)=g(x)$.
T
F
Q4 The fundamental theorem of calculus implies that $\int_{0}^{3} f^{\prime \prime}(x) d x=$ $f^{\prime}(3)-f(0)$.

T
F
Q1 Compute the definite integral $\int_{0}^{2}\left(x+x^{2}\right) d x$ as the limit of a right

Riemann sum.

(a) $\Delta x=$

Q5 If $f(x)$ is smaller than $g(x)$ for all x, then $\int_{0}^{1} f(x)-g(x) d x$ is negative.
\qquad F
(b) Right endpoint of the k-th subinterval, $x_{k}=$
(c) Height of the k-th rectangle: $f\left(x_{k}\right)=$
(d) Find the area of the k-th rectangle: $\quad A_{k}=f\left(x_{k}\right) \Delta x=$
(e) Sum of the areas of the n rectangles: $\sum_{k=1}^{n} A_{k}=$

Q10 If f is concave up on $[0,1]$ and concave down on $[1,2]$ then 1 is an inflection points.
$\frac{\mathrm{T}}{\text { Student ID Number: }}$

F
(f) Find the limit: $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} A_{k}=$

$$
\text { Q2 Let } f(x)=2 \tan x \text {. }
$$

- Find the linear approximation $L(x)$ of $f(x)=2 \tan x$ at $x=\pi$.
- Use linear approximation $L(x)$ to approximate $2 \tan (3.3)$.

Q3 Find $\lim _{x \rightarrow \frac{\pi}{2}^{-}}(\tan x-\sec x)$
Q4 Find two positive numbers x and y such that $x+y=60$ and $x y^{3}$ is maximum.
Q5 A ladder of length 10ft rests against a vertical wall. The bottom of the ladder slides away from the wall with $1 \mathrm{ft} / \mathrm{s}$ How fast is the top sliding when the bottom is 6 ft from the wall?

$$
\left.\frac{d}{d t} y=? \downarrow y \right\rvert\, \ddots, \quad \text { 10ft ladder } \underbrace{\substack{x \\ \ddots}}_{\substack{\text { wall } \\ \frac{d}{d t} x=1}}
$$

Q6 Two cars are headed for the same road intersection:

- car A is traveling west with $50 \mathrm{mi} / \mathrm{h}$
- car B is traveling north with $60 \mathrm{mi} / \mathrm{h}$

At what rate are the cars approaching when A is 0.3 mi and B is 0.4 mi from the intersection?

Q7 The figure below shows the velocity $v(t)$ of a particle moving on a horizontal coordinate line, for t in a closed interval $[0,10]$. $v(t)$

Fill in the following blanks. Use interval notation where appropriate.

- The particle is moving forward during:
- The particle's speed is increasing during:
- The particle has positive acceleration during:
- The particle has zero acceleration during:
- The particle achieves its greatest speed at:
- The particle stands still for more than an instant during:

Q8 Evaluate the limit: $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} e^{i \frac{4}{n}} \frac{4}{n}$.

