Instructions:	Multiple Choice	Questions (52	points)
Please Mark Your Answers With a Nice Circle \bigcirc NOT X!			

Q1 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation, satisfying $T(1,0)=$ $(4,2)$ and $T(0,1)=(-2,-2)$. Find $T(2,1)$.
(A) $(2,3)$
(C) $(8,1)$
(E) None
(B) $(-1,-6)$
(D) $(6,2)$
(A) -1
(B) 4
(C) 7
(D) 10
(E)

Q8 Let A be 11×6 matrix such that $A x=0$ has only trivial solution $x=0$. What is the rank of A.
(A) 5
(B) 6
(C) 11
(D) 17
(E)

None
Q9 Let A be a 4×5 matrix such that $\operatorname{rank}(A)=4$. Then $\operatorname{Nullity}(A)$ is
(A) 1
(B) 4
(C) 5
(D) 9
(E)

None
Q10 Find the area of the parallelogram determined by the points $(0,0),(2,5),(6,1)$ and $(8,6)$.
(A) 18
(B) 36
(C) 32
(D) 28
(E)

None Q11 Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5\end{array}\right)$. Then find $\operatorname{rank}(A)$.
(A) 1
(B) 2
(C) 3
(D) 4
(E)

None
Q12 If $\operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=2$ then find the determinant $\operatorname{det}\left(\begin{array}{ccc}b+4 c & e+4 f & h+4 i \\ -3 c & -3 f & -3 i \\ 5 a & 5 d & 5 g\end{array}\right)$
(A) -40
(B) -30
(C) 10
(D) 24
(E)

None
Q13 Define $T(x)=A x$ where $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$. What is the image under T of $(4,1)$.
(A) $(3,1)$
(C) $(2,6)$
(E) None
(D) $(7,9)$
(B) $(1,7)$

True and False(10pts)

Q1 If $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ is linearly dependent and T is a linear transformation, then $\left\{T\left(x_{1}\right), T\left(x_{2}\right), \cdots, T\left(x_{n}\right)\right\}$ is also linearly dependent. T

Q2 Each invertible matrix A has the same eigenvectors as A^{-1}.

T

F

Q3 If a 2 by 2 matrix A satisfies $A^{2}=0$ then $A=0$.

T

F

Q4 If A is a 4×5 matrix and B is a 5×3 matrix, then $\operatorname{rank}(A) \leq \operatorname{rank}(B)$.

T

F

Q5 If A and B are 2×2 matrices then $(A+B)(A-B)=A^{2}-B^{2}$. T

F

Classical Problems

Q1(16pts) Find the eigenvalues of the matrix $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.

Solution:

Q2(22pts) Consider the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\left(\binom{x}{y}\right)=\binom{2 x}{3 y}$.

1. Draw the image of the disk $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ under T.
2. Find the area of the image of the disk $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ under T. (Area of $T(D)=$?)

Solution:

