Please Mark Your Answers With a Nice Circle \bigcirc NOT X!

Q1 Let $F(x)=\int_{1}^{x} \sqrt{\cos t+3}$. Find $F^{\prime}(0)$.
(A) -1
(C) 2
(B) 1
(D) $\sqrt{13}$
(E) None
(A) $(-\infty, 3)$
(C) $(-\infty, 5)$
(B) $(-3,5)$
(D) $(5, \infty)$
(E) None

Q8 The slope of the line tangent to the graph of $y=x^{3}-x^{2}+1$ at $x=2$ is
(A) 7
(C) 11
(E) None
(B) 8
(D) 12
Q9 Evaluate the limit $\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2} \cdots+n^{2}}{n^{3}}$
(A) $\frac{1}{3}$
(C) $\frac{3}{2}$
(B) 3
(D) 5
(E) None

Q2 Find the average value of the function $h(x)=e^{x}$ on the interval $[1,3]$?
(A) $\frac{3 e-1}{4}$
(C) $\frac{2 e^{2}-1}{3}$
(E) None
(B) $260 e / 9$
(D) $\frac{e^{3}-e}{2}$

Q10 Evaluate the integral $\int_{-2}^{2}\left|x^{2}-4\right| d x$
$\begin{array}{ll}\text { (A) } 12 & \text { (C) } 32\end{array}$
(E) None
(B) 16
(D) $32 / 3$

Q11 Given $f(x)=\left\{\begin{array}{ll}4 x+2 a & \text { if } x \leq 3 \\ 3 x^{2}-1 & \text { if } x>3\end{array}\right.$, what value of a will make $f(x)$ continuous at $x=3$?
(A) 7
(C) 12
(B) 9
(D) 13
(E) None
(A) -11
(C) -26
(E) None
(B) 35
(D) 54

Q12 If $f(1)=1$ and $f(2)=e$ then find $\int_{1}^{2} \frac{f^{\prime}(x)}{f(x)} d x$
(A) -1
(C) 1
(E) None
(B) 0
(D) e
(A) -1
(C) -2
(E) None
(B) $1 / 2$
(D) $D N E$

Q13 Evaluate the integral $\int \frac{x^{4}-x}{x^{3}} d x$
(A) $-\frac{1}{2} x^{2}+\frac{2}{x}+c$
(C) $\frac{1}{3} x^{2}+\frac{2}{x}+c$
(E) None
(B) $\frac{1}{2} x^{2}+\frac{1}{x}+c$
(D) $-\frac{3}{2} x^{2}+\frac{3}{x}+c$
Q14 Let $F(x)=\int_{1}^{x} t f(t) d t=\sin (x-2)+e^{x}$. Then find $f(2)$.
$\begin{array}{lll}\text { (A) } 1 & \text { (C) } e^{2} & \text { (E) None }\end{array}$
(B) $1-e^{2}$
(D) $\frac{1+e^{2}}{2}$
(E) None

Q7 Given $f^{\prime \prime}(x)=\frac{x+3}{x-5}$. Find the intervals where $f(x)$ is concave downward.
(A) 0
(C) 21
(E) None
B)
(D) 19

Q6 Find the maximum value of $f(x)=x^{3}-3 x+1$ on the interval [0, 3].

Classical Problems: Show all your work(60pts).

Q1 The figure below shows the areas of regions bounded by the graph of $f(x)$ and the $x-$ axis for x in the interval $[-3,3]$.
Find $\int_{-3}^{3} f(x) d x=\square$

$\overline{\text { Q2 }}$ A television manufacturing firm needs to design an open-topped box with a square base. The box must hold $32 \mathrm{~cm}^{3}$. Find the dimensions of the box that can be built with the minimum amount of materials. Solution:

Q3 Evaluate the limit: $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} e^{i \frac{i}{n}} \frac{4}{n}$.

Solution:

