Please Mark Your Answers With a Nice Circle ○ NOT X!

Q1 Find the slant asymptote of $f(x)=\frac{x^{2}+1}{x}$.
(A) $y=x$
(C) $y=x^{2}$
(B) $y=\frac{1}{x}$
(D) $y=1$
(E) None

Q2 Find the inflection point of $f(x)=\arctan x$
(A) $x=\pi$
(C) $x=-1$
(B) $x=0$
(D) $x=\frac{2}{\pi}$
(E) None

Q3 Let $y=\ln (\ln x)$. Then find $y^{\prime}=\frac{d y}{d x}$.
(A) $\ln x$
(C) $\frac{1}{x \ln x}$
(E) None
(B) $\frac{1}{\ln x}$
(D) x

Q4 Suppose that $f=g \circ h+h \circ g, g(1)=1, g^{\prime}(1)=2, h^{\prime}(1)=2$, $h(1)=1$ then $f^{\prime}(1)=$
(A) 8
(C) 32
(E) None
(B) 21
(D) 64

Q5 The value of $\lim _{x \rightarrow 1} \frac{\sin (1-x)}{1-x^{2}}$ is
(A) -1
(C) -2
(E) None
(B) $1 / 2$
(D) $D N E$

Q6 Find the minimum value of $f(x)=x^{3}-3 x+3$ on the interval $[-2,4]$.
(A) -5
(C) 1
(E) None
(B) -1
(D) 3

Q7 Given $f^{\prime \prime}(x)=\frac{x+3}{x-5}$. Find the intervals where $f(x)$ is concave downward.
(A) $(-\infty, 3)$
(C) $(-\infty, 5)$
(E) None
(B) $(-3,5)$
(D) $(5, \infty)$

Q8 The slope of the line tangent to the graph of $y=x^{3}-x^{2}+1$ at $x=2$ is
(A) 7
(C) 11
(E) None
(B) 8
(D) 12

Q9 The value of $\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{3}{x}\right)}{\frac{1}{x}}$ is
(A) $\frac{1}{2}$
(C) $\frac{3}{2}$
(E) None
(B) 1
(D) 3

Q10 Given $f^{\prime \prime}(x)=\left(x^{2}-1\right)(x-1)$, find the x-value(s) of the inflection point(s).
(A) $x=-1$
(C) $x=-1,1$
(E) None
(B) $x=1$
(D) $x=-1,0,1$

Q11 For what value of the constant c is the function f continuous at $x=2$?

$$
f(x)= \begin{cases}c x^{3}+1 & \text { if } \quad x>2 \\ 2 x+13 & \text { if } \quad x \leq 2\end{cases}
$$

(A) 1
(C) 3
(E) None
(B) $2 / 5$
(D) $17 / 9$

Q12 Find all the vertical asymptotes of $f(x)=\frac{(x-1)(x-2)}{(x-3)(x-2)(x+2)}$.
(A) $x=-2$
(C) $x=-2,3$
(E) None
(B) $x=2,3$
(D) $x=1$

Q13 Determine the absolute minimum m and absolute maximum M for the function $f(x)=2 x^{3}-3 x^{2}-12 x$ on the interval $[-1,1]$.
(A) $m=-20, M=0$
(B) $m=-13, M=7$
(C) $m=-20, M=7$
(D) $m=-13, M=0$
(E) None

Classical Problems: Your work must be clear and logical to receive full points.

Q1(25 pts) Two cars start moving from the same point. Car S travels south at $18 \mathrm{~km} / \mathrm{h}$ and car W travels west at $24 \mathrm{~km} / \mathrm{h}$. At what rate is the distance between the cars increasing after ten minutes?

Solution:

Q2(25pts) Find two positive numbers x and y such that $x+y=60$ and $M=x y^{3}$ is maximum.

Solution:

