Name:

Mathematical Analysis I/Final Exam

Please Mark Your Answers With a Nice Circle O NOT X!

	9 . 1	
Q1 Find the slant as	ymptote of $f(x) = \frac{x^2 + 1}{x}$.	
(A) $y = x$	(C) $y = x^2$	(E) None
(B) $y = \frac{1}{x}$	(D) $y = 1$	
Q2 Find the inflection point of $f(x) = \arctan x$		
$(A) \ x = \pi$	(C) $x = -1$	(E) None
(B) $x = 0$	(D) $x = \frac{2}{\pi}$	
Q3 Let $y = \ln(\ln x)$. Then find $y' = \frac{dy}{dx}$.		
$(A) \ln x$	(C) $\frac{1}{x \ln x}$ dx	(E) None
(B) $\frac{1}{\ln x}$	(D) x	
Q4 Suppose that $f = h(1) = 1$ then $f'(1) =$	$= g \circ h + h \circ g, \ g(1) = 1,$	g'(1) = 2, h'(1) = 2,
(A) 8	(C) 32	(E) None
(B) 21	(D) 64	
Q5 The value of \lim_{x}	$\rightarrow 1 \frac{\sin(1-x)}{1-x^2}$ is	
(A) -1	(C) -2	(E) None
(B) 1/2	(D) DNE	
Q6 Find the minimu $[-2, 4]$.	Im value of $f(x) = x^3 - 3x^3$	x + 3 on the interval
(A) -5	(C) 1	(E) None
(B) -1	(D) 3	
Q7 Given $f''(x) =$ downward.	$\frac{x+3}{x-5}$. Find the intervals w	here $f(x)$ is concave
(A) $(-\infty, 3)$	(C) $(-\infty, 5)$	(E) None
(B) $(-3,5)$	(D) $(5,\infty)$	

Q8 The slope of the line tangent to the graph of $y = x^3 - x^2 + 1$ at x = 2 is (C) 11 (D) 12 (A) 7 (E) None (B) 8 Q9The value of $\lim_{x\to\infty} \frac{\sin(\frac{3}{x})}{\frac{1}{x}}$ is(A) $\frac{1}{2}$ (C) $\frac{3}{2}$ (B) 1(D) 3 (E) None Q10 Given $f''(x) = (x^2 - 1)(x - 1)$, find the x -value(s) of the inflection point(s). (A) x = -1(B) x = 1(C) x = -1, 1(E) None (D) x = -1, 0, 1Q11 For what value of the constant c is the function f continuous at x = 2 ? $f(x) = \begin{cases} cx^3 + 1 & \text{if } x > 2\\ 2x + 13 & \text{if } x \le 2 \end{cases}$ (C) 3 (E) None (D) 17/9 (A) 1(B) 2/5Q12 Find all the vertical asymptotes of $f(x) = \frac{(x-1)(x-2)}{(x-3)(x-2)(x+2)}$. (A) x = -2 (C) x = -2, 3 (E) None (D) x = 1(B) x = 2, 3Q13 Determine the absolute minimum m and absolute maximum Mfor the function $f(x) = 2x^3 - 3x^2 - 12x$ on the interval [-1, 1]. (A) m = -20, M = 0(B) m = -13, M = 7(C) m = -20, M = 7(D) m = -13, M = 0(E) None

Department:

Fall 2018

W

S

C

Classical Problems: Your work must be clear and logical to receive full points.

Q1(25 pts) Two cars start moving from the same point. Car S travels south at 18 km/h and car W travels west at 24 km/h. At what rate is the distance between the cars increasing after ten minutes?

Solution:

Q2(25pts) Find two positive numbers x and y such that x + y = 60and $M = xy^3$ is maximum.

Solution: