Multiple Choice Questions (60 points)

Q1 Under what condition can a vector (x, y, z) be written as a linear combination of $(1,-1,1)$ and $(2,1,0)$.
(A) $x+y+z=0$
(C) $2 x-y-z=0$
(E) None
(B) $3 x+2 x+z=0$
(D) $x-2 y-3 z=0$

Q2 If $A=\left(\begin{array}{ccc}3 & 1 & -5 \\ 0 & 1 & -5 \\ 0 & -2 & 10\end{array}\right)$. What is $\operatorname{rank}(A)$?
(A) 3
(B) 2
(C) 1
(D) 4
(E) None

Q3 For the augmented matrix $A=\left(\begin{array}{cccc|c}1 & 2 & 0 & 0 & 6 \\ 0 & 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 & -1\end{array}\right)$, find the number of free parameters.
(A) 0
(B) 1
(C) 2
(D) 3
(E) None

Q4 If the coefficient matrix A in a homogeneous system of 12 equations in 16 unknowns is known to have $\operatorname{rank}(A)=5$, how many free parameters are there in the general solution?
(A) 2
(B) 3
(C) 7
(D) 11
(E) None

Q5 What is the product : $\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)\binom{4}{1}$.
(A) $(3,1)$
(C) $(2,6)$
(E) None
(B) $(1,7)$
(D) $(7,9)$
(E) None
(A) $y=x+1$
(C) $y=4 x$
(B) $y=-2 x$
(D) $y=1$

Q7 Find the value of p such that the linear system $\left\{\begin{array}{r}x-y=3 \\ x+p y=p\end{array}\right.$ has no solution.
(A) $p=-1$
(C) $p=1$
(E) None

Q8 If the augmented matrix $[A \mid b]$ of a system $A x=b$ is row equivalent to $\left(\begin{array}{ccc|c}1 & 0 & 0 & 5 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ then the solution to system is
(A) $(5,-3,1)$
(C) $(0,0,0)$
(E) None
(B) $(3,-4,5)$
(D) $(5,-2,1)$

Q9 Let $A=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$. Which of the following is the correct geometric interpretation of the associated linear transformation?
(A) shear
(C) projection
(E) None
(B) reflection
(D) rotation
(B)

Q10 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear mappting, satisfying $T(1,2)=(2,0,1)$ and $T(2,3)=(0,1,2)$. Find $T(1,0)$.
(A) $(1,2,3)$
(C) $(2,0,1)$
(E) None
(B) $(-1,-6,2)$
(D) $(-6,2,1)$

Classical Problems: Show all work. No work=No credit(40 pts)

Q2(20pts) The following is the reduced row-echelon form of the augmented matrix of a system of linear equations. $\left(\begin{array}{ccccc|c}1 & 0 & -3 & 0 & 6 & 8 \\ 0 & 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 5 & -5 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

1. How many equations does the system have?

Ans: 5

2. How many variables does the system have?

Ans: 5

3. Is this system homogeneous or non-homogeneous?

> Ans:non-homogeneous
4. Find the pivot columns.

Ans: col1, col2, col3
5. Find the basic variables.

Ans: x_{1}, x_{2}, x_{4}
6. Find the free variables.

Ans: x_{3} and x_{5} are free variables
7. What is the rank of this matrix?

Ans: 3
8. How many parameters (if any) do we need for the general solution?

Ans: 2
9. What is the system of equations corresponding to this matrix?

Ans: The corresponding system of linear equations is

$$
\begin{aligned}
& x_{1}-3 x_{3}+6 x_{5}=8 \\
& x_{2}+x_{3}+2 x_{5}=0 \\
& x_{4}+5 x_{5}=-5
\end{aligned}
$$

10. What is the general solution?

Ans:

$$
\begin{array}{lr}
x_{1}=3 x_{3}-6 x_{5}+8 \\
x_{2}= & -x_{3}-2 x_{5} \\
x_{3}= & x_{3} \\
x_{4}= & -5 x_{5}-5 \\
x_{5}= & t
\end{array}
$$

Let $x_{3}=s$ and $x_{5}=t$ then

$$
\begin{array}{lr}
x_{1}=3 s-6 t+8 \\
x_{2}= & -s-2 t \\
x_{3}= & s \\
x_{4}= & -5 t-5 \\
x_{5}= & t
\end{array}
$$

Q1(20pts) Find all values of k so that the system: $2 x+k y+\quad 6 z=6$
has

1. no solutions
2. a unique solution
3. infinitely many solutions

Solution: Solution: First, we convert this linear system to an augmented matrix

$$
\left(\begin{array}{ccc|c}
1 & -2 & 3 & 1 \\
2 & k & 6 & 6 \\
-1 & 3 & k-3 & 0
\end{array}\right)
$$

and apply row operations: $R_{2} \rightarrow-2 R_{1}+R_{2} R_{3} \rightarrow R_{1}+R_{3} R_{3} \rightarrow R_{2} R_{2} \rightarrow R_{3}$ $R_{3}=-(4+k) R_{2}+R_{3}$
we get

$$
\left(\begin{array}{ccc|c}
1 & -2 & 3 & 1 \\
0 & 1 & k & 1 \\
0 & 0 & -k(k+4) & -k \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Case1: $k=0$. Then the system is

$$
\left(\begin{array}{ccc|c}
1 & -2 & 3 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and it's consistent. There is a col without a pivot (the third) so there are infinitely many solutions.
Case2: $k=-4$. Then the system is

$$
\left(\begin{array}{ccc|c}
1 & -2 & 3 & 1 \\
0 & 1 & -4 & 1 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and is inconsistent. Case $3: k \neq 0,4$. Then the system is

$$
\left(\begin{array}{ccc|c}
1 & -2 & 3 & 1 \\
0 & 1 & k & 1 \\
0 & 0 & \text { nonzero } & 0-k \\
0 & 0 & 0 & 0
\end{array}\right)
$$

