Instructions: Multiple Choice Questions (65 points)

Q1 Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \frac{\cos y}{\sqrt{1-x^{2}}} d x d y$
(A) $\frac{2 \pi}{3}$
(C) $\frac{\pi}{2}\left(\frac{e+1}{2 e}\right)$
(B) $\pi / 8 e$
(D) $\pi / 2$
(E) None

Q2 Evaluate $\int_{1}^{2} \int_{0}^{\pi} x \cos (x y) d y d x$
(A) $\ln \sqrt{6} 1$
(C) -8π
(E) None
(B) $\frac{-2}{\pi}$
(D) $\sqrt{2} \pi$

Q7 Compute $\int_{0}^{6} \sqrt{6 x-x^{2}} d x$
(A) π
(C) 4π
(E) None
P2
(B) $2 \pi^{2}$
(D) $\frac{9 \pi}{2}$
Q8

Q8 Find the equation of the plane through the point $(1,2,-3)$ and perpendicular to the vector $(2,1,-3)$
(A) $2 x+y-3 z=-8$.
(C) $2 x+y+3 z=-18$.
(B) $2 x+y-3 z=13$.
(D) None

Q9 The value of $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{3}+x^{3} y^{2}-5}{2-x y+\cos (x y)}$
(A) -2
(C) $-5 / 3$
(B) 1
(D) $D N E$
(E) None

Q3 Find the angle between the vectors: $\mathbf{u}=\sqrt{2} \mathbf{i}-\mathbf{j}-\mathbf{k}$ and $\mathbf{v}=$ $\sqrt{2} \mathbf{i}-\mathbf{k}$.
(A) π
(C) $\pi / 6$
(E) None
(B) $\pi / 3$
(D) $1+\pi$

Q10 Let $\mathbf{v}=(2,-1,3)$. Which of the following vectors is perpendicular to $\mathbf{v}: \mathbf{a}=(4,-2,6) \quad \mathbf{b}=(2,4,0) \quad \mathbf{c}=(1,1,1)$

Q4 Find the directional derivative of the function $f(x, y)=x^{3}+y^{2}$ at $(0,1)$ in the direction of $\vec{v}=(1,1)$.
(A) 2
(C) $1 / \sqrt{3}$
(E) None
(B) $\frac{-1}{5}$
(D) $\frac{2}{5}$

Q5 Find the center and the radius of the sphere

$$
x^{2}+y^{2}+z^{2}-2 y-4 z-4=0
$$

(A) $(-1,3 / 2,-2), R=7 / 2$.
(C) $(1,-3 / 2,2), R=5$.
(B) $(0,1,2), R=3$.
(D) None

Q6 What is the length of the arc described $r(t)=(\cos t, \sin t, 5 t)$ where $\pi \leq t \leq 6 \pi$
(A) $5 \pi \sqrt{2} 6$
(C) $8 \sqrt{6}$
(E) None
(B) $2 \pi \sqrt{6} 1$
(D) $4 \pi \sqrt{6} 1$
(A) \mathbf{a}
(C) \mathbf{c}
(E) None
(B) \mathbf{b}
(D) a, b

Q11 Find $\lim _{t \rightarrow 0}\left[\frac{\sin t}{t} \vec{i}+(1+t) \vec{j}+(t-1)^{4} \vec{k}\right]$
(A) \vec{i}
(C) $\vec{i}-\vec{k}$
(E) None
(B) $\vec{i}+\vec{j}$
(D) $\vec{i}+\vec{j}+\vec{k}$

Q12 Find the sum of the series $\sum_{n=2}^{\infty} \frac{3^{n}-2^{n}}{6^{n}}$
$\begin{array}{ll}\text { (A) } \frac{1}{3} & \text { (C) } 12 \pi\end{array}$
(B) $\frac{25}{6}$
(D) $\frac{11}{7}$
(E) None

Q13 Let $z=\cos (x-y)$ for a differentiable function. Then $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}$ is
(A) 1
(C) $\sqrt{2}$
(E) None
(D) 0

True and False(10pts)

continued $-\rightarrow$

Q1 The surfaces $x^{2}-y^{2}+z^{2}=2$ and $x^{2}+y^{2}+z^{2}=2$ have the same tangent plane at $(1,0,1)$.

T
 \square

Q2 $(0,0)$ is a global maximum of the function $f(x, y)=6-x^{2}-y^{2}$.
\qquad
F

Q3 If two functions $f(x, y)$ and $g(x, y)$ have the same critical points, then function $f(x, y)=\lambda g(x, y)$.

T
Q4 If $|\vec{v} \times \bar{w}|=(0,0,0)$ then $\vec{v}=\vec{w}$
\qquad F
Q5 The $\int_{1}^{\infty} \frac{1}{x^{4}} d x$ is divergent.
T
F
Classical Problems. Show all your work. No work=No credit!
Q1(15pts) Evaluate $\int_{0}^{2} \int_{y^{2}}^{4} \cos \left(x^{3 / 2}\right) d x d y$.

Solution:

Q2(15pts) Use Lagrange multipliers to find the maximum value of the function $f(x, y, z)=x+2 y-2 z$ on the sphere $x^{2}+y^{2}+z^{2}=9$.
Solution:

