Instructions: Multiple Choice Questions (60 points)

Q1 Compute $\int_{0}^{4} \sqrt{4 x-x^{2}} d x$
(A) 2π
(B) $2 \pi^{2}$
(C) 4π
(D) None

Q2 Find the sum of the series $\sum_{n=2}^{\infty} \frac{3^{n}-2^{n}}{6^{n}}$
(A) $\frac{25}{6}$
(B) $\frac{1}{3}$
(C) 12π
(D) None

Q3 Which of the following statements are true about the series $\sum_{n=3}^{\infty} \frac{\ln n}{n}$.

1. The series diverges by the Ratio Test.
2. The series diverges by the Test for Divergence.
3. The series diverges by comparison to the harmonic series.
(A) 1 only
(B) 2 only
(C) 3 only
(D) None

Q4 Find the angle between the vectors: $\mathbf{u}=\mathbf{i}-\mathbf{k}$ and $\mathbf{v}=\mathbf{j}+\mathbf{k}$.
(A) π
(B) $2 \pi / 3$
(C) $\pi / 6$
(D) None

Q5 Let, $x^{2}+y^{2}+z^{2}-4 y-8 z+4=0$. Find the center and the radius of the sphere.
(A) $\begin{gathered}(1,1,2), \\ R=1 .\end{gathered}$
(B) $\begin{gathered}(1,2,2), \\ R=5 .\end{gathered}$

(D) None

Q6 Let $\mathbf{v}=(2,-1,3)$. Which of the following vectors is perpendicular to $\mathbf{v}: \mathbf{a}=(4,-2,6) \quad \mathbf{b}=(2,4,0) \quad \mathbf{c}=(1,1,1)$
(A) \mathbf{a}
(B) \mathbf{b}
(C) \mathbf{c}
(D) None

Q7 Find the directional derivative of the function $f(x, y)=\sin \left(x^{2}+y^{2}\right)$ at $(1,1)$ in the direction of $\vec{v}=(1,1)$.
(A)
(B) $1 / \sqrt{3}$
(C) $\sqrt{2} \sin 2$
(D) None

Q8 What is the length of the arc described $r(t)=\left(t^{2}+5, \frac{4 t^{3 / 2}}{3}, t-6\right)$ where $0 \leq t \leq 1$
(A) 1
(B) 8
(C) 2
(D) None

Q9 The value of $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{3}+x^{3} y^{2}-5}{2-x y+\cos (x y)}$
(A) $-5 / 3$
(B) $D N E$
(C) 1
(D) None

Q10 Let $z=\cos (x-y)$ for a differentiable function. Then $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}$ is
(A) 1
(B) 2
(C) 0
(D) None

Q11 Evaluate $\int_{0}^{\frac{\pi}{3}} \int_{0}^{4} \cos y \sqrt{4 x-x^{2}} d x d y$
(A) $\pi \sqrt{3}$
(B) $\frac{2 \pi}{3}$
(C) $\pi / 8 e$
(D) None

Q12 Evaluate $\int_{1}^{2} \int_{0}^{\pi} y \sin (x y) d x d y$
(A) $\frac{2}{\pi}$
(B) 1
(C) $-\pi$
(D) None

Classical Problems. Show all your work. No work=No credit!
Q13(20pts) Evaluate $\int_{0}^{2} \int_{y^{2}}^{4} e^{x^{3 / 2}} d x d y$.

Solution:

Q14(20pts) Use Lagrange multipliers to find the minimum value of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the condition $x+2 y+3 z=4$. Solution:

