Instructions: Multiple Choice Questions (60 points)

Q1 Compute $\int_0^4 \sqrt{4x-x^2} dx$

- (A) 2π
- (B) $2\pi^2$ (C) 4π
- (D) None
- Q2 Find the sum of the series $\sum_{n=3}^{\infty} \frac{3^n 2^n}{6^n}$

- (B) $\frac{1}{3}$ (C) 12π
- (D) None
- Which of the following statements are true about the series
- 1. The series diverges by the Ratio Test.
- 2. The series diverges by the Test for Divergence.
- **3.** The series diverges by comparison to the harmonic series.
- (A) 1 only
- (B) 2 only
- (C) 3 only
- (D) None
- Q4 Find the angle between the vectors: $\mathbf{u} = \mathbf{i} \mathbf{k}$ and $\mathbf{v} = \mathbf{j} + \mathbf{k}$.

- (B) $2\pi/3$ (C) $\pi/6$ (D) None
- Q5 Let, $x^2 + y^2 + z^2 4y 8z + 4 = 0$. Find the center and the radius of the sphere.
- (A) (1,1,2), R=1. (B) (1,2,2), R=5. (C) (0,2,4), R=4.

- Q6 Let $\mathbf{v} = (2, -1, 3)$. Which of the following vectors is perpendicular $\overline{\mathbf{to} \ \mathbf{v}} : \mathbf{a} = (4, -2, 6) \qquad \mathbf{b} = (2, 4, 0) \qquad \mathbf{c} = (1, 1, 1)$
- (A) **a**
- $(B) \mathbf{b} \qquad (C) \mathbf{c}$
- (D) None

- Q7 Find the directional derivative of the function $f(x,y) = \sin(x^2 + y^2)$ $\overline{\text{at }(1,1)}$ in the direction of $\overrightarrow{v}=(1,1)$.
- (A) $(B) 1/\sqrt{3}$ (C) $\sqrt{2}\sin 2$

- Q8 What is the length of the arc described $r(t) = (t^2 + 5, \frac{4t^{3/2}}{3}, t 6)$ where 0 < t < 1

- (A) 1 (B) 8 (C) 2
- (D) None
- Q9 The value of $\lim_{(x,y)\to(0.0)} \frac{x^2y^3 + x^3y^2 5}{2 xy + \cos(xy)}$
- (A) -5/3 (B) DNE (C) 1

- (D) None
- Q10 Let $z = \cos(x y)$ for a differentiable function. Then $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$ is
- (A) 1 (B) 2
 - (C) 0
- (D) None

- Q11 Evaluate $\int_0^{\frac{\pi}{3}} \int_0^4 \cos y \sqrt{4x x^2} dx dy$
- (A) $\pi\sqrt{3}$ | (B) $\frac{2\pi}{3}$ | (C) $\pi/8e$
- (D) None

- Q12 Evaluate $\int_{1}^{2} \int_{0}^{\pi} y \sin(xy) dx dy$
- $(A) \frac{2}{\pi}$

 - (B) 1 (C) $-\pi$
- (D) None

Classical Problems. Show all your work. No work=No credit!

Q13(20pts) Evaluate
$$\int_{0}^{2} \int_{y^{2}}^{4} e^{x^{3/2}} dx dy$$
.

Solution:

Q14(20pts) Use Lagrange multipliers to find the minimum value of the function $f(x, y, z) = x^2 + y^2 + z^2$ subject to the condition x + 2y + 3z = 4. Solution: