Math Problems of the Month

Q1. Show that the area D of the region $O A B$ bounded by the parabola $y=x^{2}$, the x-axis and the line $x=1$ is one-third that of the square $O A B C$. (Hint: Approximate the area D under the curve $y=x^{2}$ on $[0,1]$ using upper rectangles.)

Q2. Let m, n be strictly positive integers. Prove that

$$
\lim _{x \rightarrow 1} \frac{x^{m}-1}{x^{n}-1}=\frac{m}{n}
$$

Q3. Evaluate the limit:

$$
\lim _{x \rightarrow 0} \sqrt{\sqrt{x}+x^{3}} \cos \left(\frac{\pi}{x}\right)
$$

Q4. Let

$$
f(x)= \begin{cases}x^{2} & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Prove that $\lim _{x \rightarrow 0} f(x)=0$.

Q5. A six-foot tall man is walking away from a fifteen-foot high lamppost.
(i) Find a formula for the length y of his shadow as a function of his distance x from the lamppost.
(ii) What is the rate of change of y with respect to x ?

Q6. A right triangle has base $|B C|=b$ and height $|A C|=$ h_{1}. An infinite sequence of nested right triangles is constructed inside the triangle by dropping perpendiculars as shown in the diagram.
(i) Find an expression for the edge h_{n}.
(ii) What is $\lim _{n \rightarrow \infty} h_{n}$.
(iii) Find an expression for the sum $s_{n}=h_{1}+h_{2}+\ldots h_{n}$.

