Math Problems of the Month

Q1 Verify Rolle's theorem for the function

$$
f(x)=(x-a)^{m}(x-b)^{n}
$$

in the interval $a \leq x \leq b$, where m and n are positive integers.

Q2 If $f:[-5,5] \rightarrow \mathbb{R}$ is differentiable function and $f^{\prime}(x)$ does not vanish anywhere then prove that $f(-5) \neq f(5)$.

Q3 If $\frac{a_{n}}{n+1}+\frac{a_{n-1}}{n}+\frac{a_{n-2}}{n-1}+\ldots+\frac{a_{1}}{2}+a_{0}$, then show that the equation

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0
$$

has at least one root in $(0,1)$.

Q4 When traveling $x \mathrm{~km} /$ hour, a truck uses fuel at the rate of $\frac{1}{400}\left(\frac{3600}{x}+x\right) l t / k m$ (liters per km). The fuel price is $4000 T L$ per liter. What should be the speed of the truck to cover a 600 km distance with minimum fuel consumption.

Q5 When traveling $x \mathrm{~km} /$ hour, a truck uses fuel at the rate of $\frac{1}{400}\left(\frac{3600}{x}+x\right) l t / k m$ (liters per km). The fuel price is $4000 T L$ per liter and and driver is paid 15 TL per hour. What should be the speed of the truck to cover a 600 km distance with minimum fuel consumption.

Q6 A man $2 m$ high walks at a uniform speed of $6 \mathrm{~km} /$ hour away from a lamp post $6 m$ high. Find the rate at which the length of his shadow increases.

Q7 A truck is to be driven 130 km at a constant speed of $x \mathrm{~km} / \mathrm{hr}$. Speed laws require that $40 \leq x \leq 120$. Assume that gasoline costs $40 \mathrm{TL} /$ liter and is consumed at the rate of $2+\frac{x^{2}}{360}$ liter /hours. If the driver is paid 150 TL /hours, find the most economical speed and the total cost for the trip.

