
Java SE 7 Fundamentals

Student Guide - Volume II

D67234GC20

Edition 2.0

November 2011

D74823

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered
in any way. Except where your use constitutes "fair use" under copyright law, you
may not use, share, download, upload, copy, print, display, perform, reproduce,
publish, license, post, transmit, or distribute this document in whole or in part without
the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Author
Jill Moritz
Kenneth Somerville
Cindy Church

Technical Contr ibutors
and Reviewers
Mike Williams
Tom McGinn
Matt Heimer
Joe Darcy
Brian Goetz
Alex Buckley
Adam Messenger
Steve Watts

Editors
Smita Kommini
Aju Kumar
Richard Wallis

Graphic Designers
Seema M. Bopaiah
Rajiv Chandrabhanu

Publishers
Giri Venugopal
Jayanthy Keshavamurthy

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 iii

Contents

1 Introduction

Course Objectives 1-2
Schedule 1-5
Facilities in Your Location 1-7
Quiz 1-8
Course Environment 1-9
Summary 1-10

2 Introducing the Java Technology

Objectives 2-2
Topics 2-4
Java’s Place in the World 2-5
Java Desktops 2-6
Java Mobile Phones 2-7
Java TV and Card 2-8
The Story of Java 2-9
Key Concepts of the Java Programming Language 2-10
Procedural Programming 2-11
Object-Oriented 2-12
Distributed 2-13
Simple 2-14
Multi-Threaded 2-15
Secure 2-16
Platform-Dependent Programs 2-17
Platform-Independent Programs 2-20
Quiz 2-22
Topics 2-23
Identifying Java Technology Product Groups 2-24
Java SE 2-25
Java EE 2-26
Java ME 2-27
Java Card 2-28
Setting Up the Java Development Environment 2-29
Downloading and Installing the JDK 2-30
Examining the Installed Java Development Kit 2-31

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 iv

Topics 2-32
Using an Integrated Development Environment 2-33
NetBeans IDE Download 2-34
NetBeans IDE and New Project Wizard 2-35
Quiz 2-36
Topics 2-37
Product Life Cycle (PLC) Stages 2-38
Summary 2-40
Practice 2-1 Overview: Running a Java Program Using the Command Line 2-42
Practice 2-2 Overview: Running a Java Program Using NetBeans IDE 2-43

3 Thinking in Objects

Objectives 3-2
Relevance 3-3
Topics 3-4
Analyzing a Problem by Using Object-Oriented Analysis (OOA) 3-5
Duke’s Choice Order Process 3-6
Topics 3-7
Identifying a Problem Domain 3-8
Topics 3-9
Identifying Objects 3-10
Topics 3-13
Additional Criteria for Recognizing Objects 3-14
Possible Objects in the Duke’s Choice Case Study 3-16
Topics 3-17
Identifying Object Attributes and Operations 3-18
Object with Another Object as an Attribute 3-19
Possible Attributes and Operations for Objects in the Duke’s Choice Case
 Study 3-20
Topics 3-21
Case-Study Solution: Classes 3-22
Case-Study Solution: Attributes 3-23
Case-Study Solution: Behaviors 3-25
Topics 3-27
Designing Classes 3-28
Class and Resulting Objects 3-29
Modeling Classes 3-30

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 v

Using UML-like Modeling 3-32
Quiz 3-33
Summary 3-35
Practice 3-1 Overview: Analyzing a Problem Using Object-Oriented Analysis 3-36
Practice 3-2 Overview: Designing a Programming Solution 3-37

4 Introducing the Java Language

Objectives 4-2
Topics 4-3
Relevance 4-4
Identifying the Components of a Class 4-5
Structuring Classes 4-6
Symbols Used in Defining a Java Source 4-8
Putting It All Together 4-9
Quiz 4-11
Field Declarations and Assignments 4-12
Comments 4-13
Topics 4-15
Methods 4-16
Topics 4-18
Keywords 4-19
Topics 4-20
Creating and Using a Test Class 4-21
main Method 4-22
Compiling a Program 4-23
Executing (Testing) a Program 4-24
Compiling and Running a Program by Using an IDE 4-25
Topics 4-26
Avoiding Syntax Problems 4-27
Topics 4-28
Working with an IDE Debugger 4-29
Summary 4-31
Practice 4-1 Overview: Viewing and Adding Code to an Existing Java
 Program 4-32
Practice 4-2 Overview: Creating and Compiling a Java Class 4-33
Practice 4-3 Overview: Exploring the Debugger 4-34

5 Declaring, Initializing, and Using Variables

Objectives 5-2
Relevance 5-3
Topics 5-4

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 vi

Identifying Variable Use and Syntax 5-5
Uses of Variables 5-7
Variable Declaration and Initialization 5-8
Topics 5-10
Describing Primitive Data Types 5-11
Integral Primitive Types 5-12
Floating Point Primitive Types 5-14
Textual Primitive Type 5-15
Logical Primitive Type 5-17
Topics 5-18
Naming a Variable 5-19
Assigning a Value to a Variable 5-21
Declaring and Initializing Several Variables in One Line of Code 5-22
Additional Ways to Declare Variables and Assign Values to Variables 5-23
Constants 5-25
Storing Primitives and Constants in Memory 5-26
Quiz 5-27
Topics 5-28
Standard Mathematical Operators 5-29
Increment and Decrement Operators (++ and --) 5-31
Increment and Decrement Operators (++ and ––) 5-34
Operator Precedence 5-35
Using Parentheses 5-38
Topics 5-39
Using Promotion and Type Casting 5-40
Promotion 5-42
Type Casting 5-44
Compiler Assumptions for Integral and Floating Point Data Types 5-47
Floating Point Data Types and Assignment 5-49
Example 5-50
Quiz 5-51
Summary 5-52
Practice 5-1 Overview: Declaring Field Variables in a Class 5-53
Practice 5-2 Overview: Using Operators and Performing Type Casting to
 Prevent Data Loss 5-54

6 Working with Objects

Objectives 6-2
Topics 6-3
Working with Objects: Introduction 6-4
Accessing Objects by Using a Reference 6-5

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 vii

Shirt Class 6-6
Topics 6-7
Working with Object Reference Variables 6-8
Declaring and Initializing: Example 6-9
Working with Object References 6-10
References to Different Objects 6-13
References to Different Object Types 6-14
References and Objects In Memory 6-15
Assigning a Reference to Another Reference 6-16
Two References, One Object 6-17
Assigning a Reference to Another Reference 6-18
Quiz 6-19
Topics 6-20
String Class 6-21
Concatenating Strings 6-22
String Method Calls with Primitive Return Values 6-26
String Method Calls with Object Return Values 6-27
Method Calls Requiring Arguments 6-28
Topics 6-29
Java API Documentation 6-30
Java Platform SE 7 Documentation 6-31
Java Platform SE 7: Method Summary 6-33
Java Platform SE 7: Method Detail 6-34
System.out Methods 6-35
Documentation on System.out.println() 6-36
Using the print() and println() Methods 6-37
Topics 6-38
StringBuilder Class 6-39
StringBuilder Advantages over String for Concatenation (or Appending) 6-40
StringBuilder: Declare and Instantiate 6-41
StringBuilder Append 6-42
Quiz 6-43
Summary 6-44
Practice 6-1 Overview: Creating and Manipulating Java Objects 6-45
Practice 6-2 Overview: Using the StringBuilder Class 6-46
Practice 6-3 Overview: Examining the Java API Specification 6-47

7 Using Operators and Decision Constructs

Objectives 7-2
Relevance 7-3
Topics 7-4

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 viii

Using Relational and Conditional Operators 7-5
Elevator Example 7-6
ElevatorTest.java File 7-8
Relational Operators 7-9
Testing Equality Between Strings 7-10
Common Conditional Operators 7-11
Ternary Conditional Operator 7-12
Topics 7-13
Creating if and if/else Constructs 7-14
if Construct 7-15
if Construct: Example 7-16
if Construct: Output 7-18
Nested if Statements 7-19
if/else Construct 7-21
if/else Construct: Example 7-22
if/else Construct 7-24
Topics 7-25
Chaining if/else Constructs 7-26
Topics 7-28
Using the switch Construct 7-29
Using the switch Construct: Example 7-31
When To Use switch Constructs 7-33
Quiz 7-34
Summary 7-36
Practice 7-1 Overview: Writing a Class That Uses the if/else Statement 7-37
Practice 7-2 Overview: Writing a Class That Uses the switch Statement 7-38

8 Creating and Using Arrays

Objectives 8-2
Topics 8-3
Introduction to Arrays 8-4
One-Dimensional Arrays 8-5
Creating One-Dimensional Arrays 8-6
Array Indices and Length 8-7
Topics 8-8
Declaring a One-Dimensional Array 8-9
Instantiating a One-Dimensional Array 8-10
Initializing a One-Dimensional Array 8-11
Declaring, Instantiating, and Initializing One-Dimensional Arrays 8-12
Accessing a Value Within an Array 8-13
Storing Arrays in Memory 8-14

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 ix

Storing Arrays of References in Memory 8-15
Quiz 8-16
Topics 8-18
Using the args Array in the main Method 8-19
Converting String Arguments to Other Types 8-20
Topics 8-21
Describing Two-Dimensional Arrays 8-22
Declaring a Two-Dimensional Array 8-23
Instantiating a Two-Dimensional Array 8-24
Initializing a Two-Dimensional Array 8-25
Topics 8-26
ArrayList Class 8-27
Class Names and the Import Statement 8-28
Working with an ArrayList 8-29
Quiz 8-30
Summary 8-31
Practice 8-1 Overview: Creating a Class with a One-Dimensional Array of Primitive
Types 8-32
Practice 8-2 Overview: Creating and Working with an ArrayList 8-33
Practice 8-3 Overview: Using Runtime Arguments and Parsing the args Array 8-34

9 Using Loop Constructs

Objectives 9-2
Topics 9-3
Loops 9-4
Repeating Behavior 9-5
Creating while Loops 9-6
while Loop in Elevator 9-7
Types of Variables 9-8
while Loop: Example 1 9-9
while Loop: Example 2 9-10
while Loop with Counter 9-11
Topics 9-12
for Loop 9-13
Developing a for Loop 9-14
Topics 9-15
Nested for Loop 9-16
Nested while Loop 9-17
Topics 9-18
Loops and Arrays 9-19
for Loop with Arrays 9-20

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 x

Setting Values in an Array 9-21
Enhanced for Loop with Arrays 9-22
Enhanced for Loop with ArrayLists 9-23
Using break with Loops 9-24
Using continue with Loops 9-25
Topics 9-26
Coding a do/while Loop 9-27
Topics 9-29
Comparing Loop Constructs 9-30
Quiz 9-31
Summary 9-33
Practice 9-1 Overview: Writing a Class That Uses a for Loop 9-34
Practice 9-2 Overview: Writing a Class That Uses a while Loop 9-35
Challenge Practice 9-3 Overview: Converting a while Loop to a for Loop 9-36
Practice 9-4 Overview: Using for Loops to Process an ArrayList 9-37
Practice 9-5 Overview: Writing a Class That Uses a Nested for Loop to Process a
 Two-Dimensional Array 9-38
Challenge Practice 9-6 Overview: Adding a Search Method to ClassMap 9-39

10 Working with Methods and Method Overloading

Objectives 10-2
Topics 10-3
Creating and Invoking Methods 10-4
Basic Form of a Method 10-5
Invoking a Method in a Different Class 10-6
Caller and Worker Methods 10-7
Passing Arguments and Returning Values 10-8
Creating a Method with a Parameter 10-9
Creating a Method with a Return Value 10-10
Invoking a Method in the Same Class 10-11
How Arguments Are Passed to Methods 10-12
Passing by Value 10-13
Advantages of Using Methods 10-16
Quiz 10-17
Invoking Methods: Summary 10-18
Topics 10-19
Math Utilities 10-20
Static Methods in Math 10-21
Creating static Methods and Variables 10-22
static Variables 10-24
Static Methods and Variables in the Java API 10-25

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xi

Topics 10-27
Method Signature 10-28
Method Overloading 10-29
Using Method Overloading 10-30
Method Overloading and the Java API 10-32
Quiz 10-33
Summary 10-34
Practice 10-1 Overview: Writing a Method with Arguments and Return Values 10-35
Challenge Practice 10-2 Overview: Writing a Class That Contains an Overloaded
 Method 10-36

11 Using Encapsulation and Constructors

Objectives 11-2
Topics 11-3
Overview 11-4
public Modifier 11-5
Dangers of Accessing a public Field 11-6
private Modifier 11-7
Trying to Access a private Field 11-8
private Modifier on Methods 11-9
Interface and Implementation 11-10
Get and Set Methods 11-11
Using Setter and Getter Methods 11-12
Setter Method with Checking 11-13
Using Setter and Getter Methods 11-14
Encapsulation: Summary 11-15
Topics 11-16
Initializing a Shirt Object 11-17
Constructors 11-18
Creating Constructors 11-19
Initializing a Shirt Object by Using a Constructor 11-21
Multiple Constructors 11-22
Quiz 11-23
Summary 11-24
Practice 11-1 Overview: Implementing Encapsulation in a Class 11-25
Challenge Practice 11-2 Overview: Adding Validation to the DateThree Class 11-26
Practice 11-3 Overview: Creating Constructors to Initialize Objects 11-27

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xii

12 Using Advanced Object-Oriented Concepts
Objectives 12-2
Topics 12-3
Class Hierarchies 12-4
Topics 12-5
Common Behaviors 12-6
Code Duplication 12-7
Inheritance 12-8
Overriding Superclass Methods 12-9
Clothing Superclass: 1 12-10
Clothing Superclass: 2 12-11
Clothing Superclass: 3 12-12
Declaring a Subclass 12-13
Declaring a Subclass (extends, super, and this keywords) 12-14
Declaring a Subclass: 2 12-15
Abstract Classes 12-16
Abstract Clothing Superclass: 1 12-17
Abstract Clothing Superclass: 2 12-18
Superclass and Subclass Relationships 12-19
Another Inheritance Example 12-20
Topics 12-21
Superclass Reference Types 12-22
Access to Object Functionality 12-23
Accessing Class Methods from Superclass 12-24
Casting the Reference Type 12-25
Casting 12-26
instanceof Operator 12-27
Polymorphic Method Calls 12-28
Quiz 12-29
Topics 12-30
Multiple Hierarchies 12-31
Interfaces 12-32
Implementing the Returnable Interface 12-33
Access to Object Methods from Interface 12-34
ArrayList 12-35
List Interface 12-36
Topics 12-37
Object Class 12-38
Calling the toString() Method 12-39
Quiz 12-40
Summary 12-41

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xiii

Practice 12-1 Overview: Creating and Using Superclasses and Subclasses 12-42
Practice 12-2 Overview: Using a Java Interface 12-43

13 Handling Errors

Objectives 13-2
Topics 13-3
Reporting Exceptions 13-4
How Exceptions Are Thrown 13-6
Types of Exceptions 13-7
OutOfMemoryError 13-8
Topics 13-9
Method Stack 13-10
Call Stack: Example 13-11
Throwing Throwables 13-12
Working with Exceptions in NetBeans 13-14
Catching an Exception 13-15
Uncaught Exception 13-16
Exception Printed to Console 13-17
Summary of Exception Types 13-18
Quiz 13-19
Topics 13-21
Exceptions in the Java API Documentation 13-22
Calling a Method That Throws an Exception 13-23
Working with a Checked Exception 13-24
Best Practices 13-25
Bad Practices 13-26
Topics 13-28
Multiple Exceptions 13-29
Catching IOException 13-30
Catching IllegalArgumentException 13-31
Catching Remaining Exceptions 13-32
Summary 13-33
Practice 13-1 Overview: Using a Try/Catch Block to Handle an Exception 13-34
Practice 13-2 Overview: Catching and Throwing a Custom Exception 13-35

14 Deploying and Maintaining the Duke's Choice Application

Objectives 14-2
Topics 14-3
Packages 14-4
Packages Directory Structure 14-5
Packages in NetBeans 14-6

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xiv

Packages in Source Code 14-7
Topics 14-8
DukesChoice.jar 14-9
Set Main Class of Project 14-10
Creating the JAR File with NetBeans 14-11
Topics 14-13
Client/Server Two-Tier Architecture 14-14
Client/Server Three-Tier Architecture 14-15
Topics 14-16
The Duke's Choice Application 14-17
Clothing Class 14-18
Tiers of Duke's Choice 14-20
Running the JAR File from the Command Line 14-21
Listing Items from the Command Line 14-22
Listing Items in Duke's Choice Web Application 14-23
Topics 14-25
Enhancing the Application 14-26
Adding a New Item for Sale 14-27
Implement Returnable 14-29
Implement Constructor 14-30
Suit Class: Overriding getDisplay() 14-31
Implement Getters and Setters 14-32
Updating the Applications with the Suit Class 14-33
Testing the Suit Class: Command Line 14-34
Testing the Suit Class: Web Application 14-35
Adding the Suit Class to the Web Application 14-36
Summary 14-37
No Practice for This Lesson 14-38
Course Summary 14-39

A Java Language Quick Reference

B UMLet Tips

UML Default Interface B-2

C Resources

Java on Oracle Technology Network (OTN) C-2
Java SE Downloads C-3
Java Documentation C-4
Java Community C-5
Java Community: Expansive Reach C-6

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xv

Java Community: Java.net C-7
Java Technologies C-8
Java Training C-9
Oracle Learning Library C-10
Java Magazine C-11

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating and Using Arrays

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 8 - 2

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:
• Declare, instantiate, and initialize a one-dimensional array
• Declare, instantiate, and initialize a two-dimensional array
• Access a value within an array
• Describe how arrays are stored in memory
• Declare and initialize an ArrayList
• Use an args array

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 8 - 3

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Overview of arrays
• Declaring, instantiating, and initializing arrays
• Accessing command-line arguments
• Working with two-dimensional arrays
• Working with ArrayList

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 8 - 4

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Introduction to Arrays

• An array is a container object that holds a group of values
of a single type.

• A value in the array can be a primitive or an object type.
• The length of an array is established when the array is

created.
• After creation, the length of an array cannot be changed.
• Each item in an array is called an element.
• Each element is accessed by a numerical index.
• The index of the first element is 0 (zero).

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Consider a program where you store the ages of 10 people. You could create individual variables
to hold each of the 10 values. You could do this using the code shown in the slide, but there are
problems with this approach. What if you had to store 1,000 ages or 10,000 ages? As the number
of values increases, your program becomes increasingly unmanageable. Or, what if you had to
find the average age, or sort the ages into ascending order? You would have to refer to each
variable individually in your code.
As you will see, arrays in Java (and related constructs such as lists) give you a much more
convenient way to work with sets of data. In this lesson, you learn about arrays. In the lesson titled
“Using Loop Constructs,” you learn how to use loops to programmatically work through all the
values in an array.

Java SE 7 Fundamentals 8 - 5

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

One-Dimensional Arrays

int ageOne = 27;

int ageTwo = 12;

int ageThree = 82;

int ageFour = 70;

int ageFive = 54;

int ageSix = 6;

int ageSeven = 1;

int ageEight = 30;

int ageNine = 34;

int ageTen = 42;

Example:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Java programming language allows you to group multiple values of the same type (lists) using
arrays. Arrays are useful when you have related pieces of data (such as the ages of several
people), but you do not want to create separate variables to hold each piece of data.
You can create an array of primitive types, such as int, or an array of references to object types,
such as Shirt or String. Each part of the array is an element. If you declare an array of 100 int
types, there are 100 elements. You can access each specific element within the array by using its
location or index in the array.
The diagram in the slide shows examples of arrays for int types, Shirt types, and String types.

Java SE 7 Fundamentals 8 - 6

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating One-Dimensional Arrays

Array of int types

70 1 30 345427 8212

Array of Shirt types

Array of String types

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

An array is a container object that holds a fixed number of values of a single type. The length of an
array is established when the array is created. After creation, the length of an array cannot be
changed.
Each item in an array is called an element, and each element is accessed by its numerical index.
As shown in the diagram in the slide, numbering begins with 0. For example, the eighth element
would be accessed at index 7.
The length of an array can be accessed using dot notation to access the length field. Assuming
the array in the diagram is called ages, you can use: int agesLength = ages.length;
This assigns a value of 8 to int agesLength.

Java SE 7 Fundamentals 8 - 7

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Array Indices and Length

70 1 30 345427 8212

0 1 2 3 4 5 6 70

Array length is 8
(ages.length)

1

Element
at index 5

First
index

Indices

Array ages of eight elements

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 8 - 8

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Overview of arrays
• Declaring, instantiating, and initializing arrays
• Accessing command-line arguments
• Working with two-dimensional arrays
• Working with ArrayList

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Arrays are handled by an implicit Array object (which is not available in the Java API). Just like
with any object, you must declare an object reference to the array, instantiate an Array object, and
then initialize the Array object before you can use it.
The syntax used to declare a one-dimensional array is:

type [] array_identifier;

where:
• type represents the primitive data type or object type for the values stored in the array
• [] informs the compiler that you are declaring an array
• array_identifier is the name that you are assigning to refer to the array

When you declare an array, the compiler and the Java Virtual Machine (JVM) have no idea how
large the arrays will be because you have declared a reference variable that does not currently
point to any objects.

Java SE 7 Fundamentals 8 - 9

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Shirt [] shirts;

String [] names;

• Syntax:
type [] array_identifier;

• Declare arrays of types char and int:

• Declare arrays of object references of types Shirt and
String:

Declaring a One-Dimensional Array

char [] status;

int [] ages;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Before you can initialize an array, you must instantiate an Array object large enough to hold all of
the values in the array. Instantiate an array by defining the number of elements in the array.
The syntax used to instantiate an Array object is:

array_identifier = new type [length];

where:
• array_identifier is the name you are assigning to reference the array
• type represents the primitive data type or object type for the values stored in the array
• length represents the size (in number of elements) of the array

When you instantiate an Array object, every primitive element is initialized to the zero value for the
type you specified. In the case of the char array called status, each value is initialized to
\u0000 (the null character of the Unicode character set). For the int array called ages, the initial
value is the integer value 0. For the names and shirt arrays, the object references are initialized
to null.

Java SE 7 Fundamentals 8 - 10

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

• Syntax:
array_identifier = new type [length];

• Examples:

Instantiating a One-Dimensional Array

status = new char [20];

ages = new int [5];

names = new String [7];

shirts = new Shirt [3];

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

You can fill the contents of an array after you have created it. The syntax for setting the values in
an array is:

array_identifier[index] = value;

where:
• array_identifier is the name you are assigning to the array
• index represents the location in the array where the value will be placed

Use the new keyword to create the Shirt objects and to place the references to the Shirt objects
into each position in the array.
Note: The index to the first element of an array is 0 and the index to the last element of the array
is the length of the array minus 1. For example, the last element of a six-element array is index 5.

Java SE 7 Fundamentals 8 - 11

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

ages[0] = 19;

ages[1] = 42;

ages[2] = 92;

ages[3] = 33;

• Syntax:
array_identifier[index] = value;

• Set values in the ages array:

• Set references to Shirt objects in the shirts array:

Initializing a One-Dimensional Array

shirts[0] = new Shirt();

shirts[1] = new Shirt();

shirts[2] = new Shirt();

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

If you know the values you want in your array at the time that you declare it, you can declare,
instantiate, and set the values for an Array object in the same line of code. The syntax for this is:

type [] array_identifier =
{comma-separated_list_of_values_or_expressions};

where:
• type represents the primitive data type or object type for the values to be stored
• [] informs the compiler that you are declaring an array
• array_identifier is the name you are assigning to the array
• {comma-separated_list_of_values_or_expressions} represents a list of values that you

want to store in the array
The examples in the slide show statements that combine the declaration, instantiation, and
initialization. Notice how the new keyword is used to instantiate the Shirt object so that a reference
to that object can be placed in the array.
The final example in the slide returns an error. You cannot declare and initialize an array in
separate lines by using the comma-separated list technique.

Java SE 7 Fundamentals 8 - 12

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

• Syntax:
type [] array_identifier = {comma-separated list of values
or expressions};

• Examples:

• Not permitted (NetBeans will show an error):

int [] ages = {19, 42, 92, 33, 46};

Shirt [] shirts = {new Shirt(), new Shirt(), new Shirt()};

Declaring, Instantiating, and Initializing
One-Dimensional Arrays

int [] ages;
ages = {19, 42, 92, 33, 46};

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Each element of an array is accessed using its index. To access a value from the array, state the
array name and the index number for the element (in square brackets []) on the right side of an
assignment operator.

Java SE 7 Fundamentals 8 - 13

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

• Setting a value:

• Getting a value:

Accessing a Value Within an Array

char s = status[0];

String name = names [1];

int age = ages[1];

double price = prices[2];

status[0] = '3';

names[1] = "Fred Smith";

ages[1] = 19;

prices[2] = 9.99F;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Arrays are objects referred to by an object reference variable. The diagram in the slide illustrates
how a primitive array is stored in memory in comparison to how a primitive data type is stored in
memory.
The value of the size variable (a char primitive) is L. The value of sizes[] is 0x334009, and it
points to an object of type array (of char types) with three values. The value of sizes[0] is
char S, the value of sizes[1] is char M, and the value of sizes[2] is char L.

Java SE 7 Fundamentals 8 - 14

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Storing Arrays in Memory

L

0x034009

size

sizes

char size = 'L'

char[] sizes = {'S', 'M', 'L' };

0
1
2

S

M

L

0x034009

Primitive variable
of type char

Primitive variable
of type char held
as array element

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The diagram in the slide illustrates how an object reference array is stored in memory. The value
of the myShirt object reference is x034009, which is an address to an object of type Shirt with
the values 0, 0.0, and U. The value of the shirts[] object reference is x99f311, which is an
address to an object of type array (of Shirt object references) containing three object references:

• The value of the shirts[0] index is 0x00099, which is an object reference pointing to an
object of type Shirt.

• The value of the shirts[1] index is 0x00327, which is an object reference pointing to
another object of type Shirt.

• The value of the shirts[2] index is 0x00990, which is an object reference pointing to
another object of type Shirt.

Java SE 7 Fundamentals 8 - 15

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Storing Arrays of References in Memory

0x034009

0x99f311

myShirt

shirts
0x99f311

shirtID
price
colorCode

0
0.0
U

shirtID
price
colorCode

0
0.0
U

shirtID
price
colorCode

0
0.0
U

shirtID
price
colorCode

0
0.0
U

0x00099
0x00327
0x00990

Shirt myShirt = new Shirt();

Shirt[] shirts = { new Shirt(), new Shirt(), new Shirt() };

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c

Java SE 7 Fundamentals 8 - 16

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

The following code is the correct syntax for _____ an array:
array_identifier = new type [length];

a. Declaring
b. Setting array values for
c. Instantiating
d. Declaring, instantiating, and setting array values for

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: a, c

Java SE 7 Fundamentals 8 - 17

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

Given the following array declaration, determine which of the
three statements below it are true.
int [] autoMobile = new int [13];

a. autoMobile[0] is the reference to the first element in
the array.

b. autoMobile[13] is the reference to the last element in
the array.

c. There are 13 integers in the autoMobile array.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 8 - 18

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Overview of arrays
• Declaring, instantiating, and initializing arrays
• Accessing command-line arguments
• Working with two-dimensional arrays
• Working with ArrayList

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

When you pass strings to your program on the command line, the strings are put in the args
array. To use these strings, you must extract them from the args array and, optionally, convert
them to their proper type (because the args array is of type String).
The ArgsTest class shown in the slide extracts two String arguments passed on the command
line and displays them.
To add parameters on the command line, you must leave one or more spaces after the class
name (in this case, ArgsTest) and one or more spaces between each parameter added.
NetBeans does not allow you a way to run a Java class from the command line, but you can set
command-line arguments as a property of the project your code is in. You use this technique in the
practice for this lesson.

Java SE 7 Fundamentals 8 - 19

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

• Parameters can be typed on the command line:

• Code for retrieving the parameters:

Using the args Array in the main Method

public class ArgsTest {

public static void main (String[] args) {

System.out.println("args[0] is " + args[0]);

System.out.println("args[1] is " + args[1]);

}

}

> java ArgsTest Hello World!

args[0] is Hello

args[1] is World!
The first parameter
goes into args[0].

The second
parameter goes into
args[1] and so on.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The main method treats everything you type as a literal string. If you want to use the string
representation of a number in an expression, you must convert the string to its numerical
equivalent. Every data type has an associated class containing static utility methods for converting
strings to that data type (Integer class for int, Byte class for byte, Long class for long, and
so on). For example, to convert the first argument passed to the main method to an int type, use
Integer.parseInt(args[0]).
Note that the parentheses around arg1 + arg2 are required so that the + sign indicates addition
rather than concatenation.

Java SE 7 Fundamentals 8 - 20

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

• Numbers can be typed as parameters:

• Conversion of String to int:

Converting String Arguments to Other Types

public class ArgsTest {

public static void main (String[] args) {

System.out.println("Total is: " + (args[0] + args[1]));

int arg1 = Integer.parseInt(args[0]);

int arg2 = Integer.parseInt(args[1]);

System.out.println("Total is: " + (arg1 + arg2));

}

}

> java ArgsTest 2 3

Total is: 23

Total is: 5

These are Strings!These are Strings!

Integer.parse
Int() converts to

int.

Concatenation, not addition!

Note parenthesesNote parentheses.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 8 - 21

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Overview of arrays
• Declaring, instantiating, and initializing arrays
• Accessing command-line arguments
• Working with two-dimensional arrays
• Working with ArrayList

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

You can also store matrices of data by using multidimensional arrays. Multidimensional arrays
have two or more dimensions. A two-dimensional (2D) array is an array of arrays, a 3D array is an
array of 2D arrays, a 4D array is an array of 3D arrays, and so on. A two-dimensional array is
similar to a spreadsheet with multiple columns (each column represents one array or list of items)
and multiple rows.
The diagram in the slide shows a two-dimensional array. Note that the descriptive names Week 1,
Week 2, Monday, Tuesday, and so on would not be used to access the elements of the array.
Instead, Week 1 would be index 0 and Week 4 would be index 3 along that dimension, while
Sunday would be index 0 and Saturday would be index 6 along the other dimension.

Java SE 7 Fundamentals 8 - 22

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Describing Two-Dimensional Arrays

Week 1

Week 2

Week 3

Week 4

Su
nd

ay

M
on

da
y

Tu
es

da
y

W
ed

ne
sd

ay

Th
ur

sd
ay

Fr
id

ay

Sa
tu

rd
ay

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Two-dimensional arrays require an additional set of square brackets. The process of creating and
using two-dimensional arrays is otherwise the same as with one-dimensional arrays. The syntax
for declaring a two-dimensional array is:

type [][] array_identifier;

where:
• type represents the primitive data type or object type for the values stored in the array
• [][] inform the compiler that you are declaring a two-dimensional array
• array_identifier is the name you have assigned to the array during declaration

The example shown declares a two-dimensional array (an array of arrays) called yearlySales.

Java SE 7 Fundamentals 8 - 23

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

• Syntax:
type [][] array_identifier;

• Example:
int [][] yearlySales;

Declaring a Two-Dimensional Array

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The syntax for instantiating a two-dimensional array is:
array_identifier = new type [number_of_arrays] [length];

where:
• array_identifier is the name you have assigned the array during declaration
• number_of_arrays is the number of arrays within the array
• length is the length of each array within the array

The example shown in the slide instantiates an array of arrays for quarterly sales amounts over
five years. The yearlySales array contains five elements of the type int array (five subarrays).
Each subarray is four elements in size and tracks the sales for one year over four quarters.

Java SE 7 Fundamentals 8 - 24

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

• Syntax:
array_identifier = new type [number_of_arrays] [length];

• Example:
// Instantiates a 2D array: 5 arrays of 4 elements each

yearlySales = new int[5][4];

Instantiating a Two-Dimensional Array

Quarter 1 Quarter 2 Quarter 3 Quarter 4

Year 1

Year 2

Year 3

Year 4

Year 5

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

When setting (or getting) values in a two-dimensional array, indicate the index number in the array
by using a number to represent the row, followed by a number to represent the column. The
example in the slide shows five assignments of values to elements of the yearlySales array.

Java SE 7 Fundamentals 8 - 25

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Example:

Initializing a Two-Dimensional Array

yearlySales[0][0] = 1000;

yearlySales[0][1] = 1500;

yearlySales[0][2] = 1800;

yearlySales[1][0] = 1000;

yearlySales[3][3] = 2000;

Quarter 1 Quarter 2 Quarter 3 Quarter 4

Year 1 1000 1500 1800

Year 2 1000

Year 3

Year 4 2000

Year 5

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 8 - 26

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Overview of arrays
• Declaring, instantiating, and initializing arrays
• Accessing command-line arguments
• Working with two-dimensional arrays
• Working with ArrayList

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

For lists that are very dynamic, it may be easier to work with a specialized List type object. This
can free you from having to write code to:

• Keep track of the index of the last piece of data added
• Keep track of how full the array is and determine if it needs to be resized
• Increase the size of the array by creating a new one and copying the elements from the

current one into it

Java SE 7 Fundamentals 8 - 27

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

ArrayList Class

Arrays are not the only way to store lists of related data:
• ArrayList is one of a number of list classes.
• It has a set of useful methods for managing its elements:

– add(), get(), remove(), indexOf(), and many others
• You do not need to specify a size when you instantiate an

ArrayList:
– As you add more elements, the ArrayList grows as necessary.
– You can specify an initial capacity, but it is not mandatory to

do so.
• An ArrayList can store only objects, not primitives.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Classes in the Java programming language are grouped into packages depending on their
functionality. For example, all classes related to the core Java programming language are in the
java.lang package, which contains classes that are fundamental to the Java programming
language, such as String, Math, and Integer. Classes in the java.lang package can be referred
to in code by just their class names. They do not require full qualification or the use of an import
statement.
All classes in other packages (for example, ArrayList) require that you fully qualify them in the
code, or that you use an import statement so that they can be referred to directly in the code.
The import statement can be:

• For just the class in question
java.util.ArrayList;

• For all classes in the package
java.util.*;

Java SE 7 Fundamentals 8 - 28

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

import java.util.ArrayList;

public class ArrayListExample {

public static void main (String[] args) {

ArrayList myList;

}

}

• ArrayList is in the package java.util.
• To refer to the ArrayList in your code, you can fully qualify

java.util.ArrayList myList;

or you can add the import statement at the top of the class.

Class Names and the Import Statement

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Declaring an ArrayList is exactly the same as declaring any other reference type. Likewise,
instantiating an ArrayList is the same as instantiating any other object. (You can check the
documentation for other possibilities for instantiating.)
There are a number of methods to add data to the ArrayList. The example in the slide uses the
simplest, add(), to add a string. Each call to add adds a new element to the end of the ArrayList.
Finally, a big advantage of ArrayList over an array is that there are many methods available for
manipulating the data. The example here shows just one method, but it is very powerful.

• remove(0): This removes the first element (in this case, "John").
• remove(myList.size() – 1): This removes the last element because

myList.size() gives the number of elements of the array, so the last one is the size
minus 1 (this removes "Desmond").

• remove("Mary"): This removes a specific element. In this case, you have the convenience
of referring not to where the element is in the ArrayList, but rather to what it is.

You can pass an ArrayList to System.out.println() and the resulting output will be:
[Ming, Prashant]

Java SE 7 Fundamentals 8 - 29

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Working with an ArrayList

ArrayList myList;

myList = new ArrayList();

myList.add("John");

myList.add("Ming");

myList.add("Mary");

myList.add("Prashant");

myList.add("Desmond");

myList.remove(0);

myList.remove(myList.size()-1);

myList.remove("Mary");

System.out.println(myList);

Declare a reference.

Instantiate the ArrayList.

Initialize the ArrayList.

Modify the ArrayList.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c

Java SE 7 Fundamentals 8 - 30

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

A two-dimensional array is similar to a _______.
a. Shopping list
b. List of chores
c. Matrix
d. Bar chart containing the dimensions for several boxes

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 8 - 31

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned the following:
• An array in Java is a data type that is composed of a set of

other data types:
– The data types can be objects or primitives.
– Each data value is an element of the array.

• Arrays are created with a specific size (number of
elements).

• Each element in an array can be accessed using its index:
– The first index is 0 (zero).

• The data type of an array can be another array:
– This creates a two-dimensional array.

• Another option is to use a specialized
List class, such as ArrayList.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 8 - 32

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 8-1 Overview: Creating a Class with a
One-Dimensional Array of Primitive Types

In this practice, you create an array containing the number of
vacation days that an employee at the Duke’s Choice company
receives.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 8 - 33

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 8-2 Overview:
Creating and Working with an ArrayList

In this practice, you experiment with populating and
manipulating ArrayLists. During the practice, you:
• Create two classes, NamesList and NamesListTest
• Add a method to the NamesList class to populate the list

and display its contents
• Add a method to manipulate the values in the list

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 8 - 34

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 8-3 Overview: Using Runtime Arguments
and Parsing the args Array

In this practice, you write a guessing game that accepts an
argument and displays an associated message. During the
practice, you:
• Create a class that accepts a runtime argument
• Generate a random number
• Compare the random number with an argument value

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Using Loop Constructs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 2

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:
• Create a while loop
• Nest a while loop
• Develop and nest a for loop
• Code and nest a do/while loop
• Use an ArrayList in a for loop
• Compare loop constructs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 3

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Create a while loop
• Develop a for loop
• Nest a for loop and a while loop
• Use an array in a for loop
• Code and nest a do/while loop
• Compare loop constructs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 4

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Loops

Loops are frequently used in programs to repeat blocks of
statements until an expression is false.
There are three main types of loops:
• while loop: Repeats while an expression is true
• do/while loop: Executes once and then continues to

repeat while true
• for loop: Repeats a set number of times

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In computer programming, it is common to need to repeat a number of statements. Typically, the
code continues to repeat the statements until something changes. Then the code breaks out of the
loop and continues with the next statement.

Java SE 7 Fundamentals 9 - 5

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Repeating Behavior

Are we
there yet?

while (!areWeThereYet) {

read book;

argue with sibling;

ask, "Are we there yet?";

}

Woohoo!;

Get out of car;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 6

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating while Loops

Syntax:
while (boolean_expression) {

code_block;

} // end of while construct

// program continues here

If the boolean
expression is true, this
code block executes.

If the boolean expression is
false, program continues here.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code in the slide shows a very simple while loop in the Elevator class. Remember that
this particular elevator accepts commands for going up or down only one floor at a time. So to
move a number of floors, the goUp() or goDown() method needs to be called a number of times.
Notice how the boolean expression is written. The expression returns true if currentFloor is not
equal to desiredFloor. So, when these two variables are equal, this expression returns false
(because the elevator is now at the desired floor), and the while loop is not executed.

Java SE 7 Fundamentals 9 - 7

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

while Loop in Elevator

public void setFloor() {

// Normally you would pass the desiredFloor as an argument to the

// setFloor method. However, because you have not learned how to

// do this yet, desiredFloor is set to a specific number (5)

// below.

int desiredFloor = 5;

while (currentFloor != desiredFloor){

if (currentFloor < desiredFloor) {

goUp();

}

else {

goDown();

}

}

}

If the boolean
expression returns
true, execute the
while loop.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

This setFloor method uses two different types of variables. The currentFloor variable is an
instance variable, usually called a field. It is a member of the Elevator class. In an earlier
lesson, you saw how fields of an object could be accessed by using the dot notation. Fields are
declared outside of method code, usually just after the class declaration.
The desiredFloor variable is a local variable, declared within the setFloor method and
accessible only within that method. Another way to say this is that its scope is the setFloor
method. As you will see later, local variables can also be declared within loops or if statements.
Regardless of whether a local variable is declared within a method, a loop, or an if statement, its
scope is always the block within which it is declared.

Java SE 7 Fundamentals 9 - 8

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Types of Variables

public class Elevator {

public boolean doorOpen=false;

public int currentFloor = 1;

public final int TOP_FLOOR = 10;

public final int BOTTOM_FLOOR = 1;

... < lines of code omitted > ...

public void setFloor() {

int desiredFloor = 5;

while (currentFloor != desiredFloor){

if (currentFloor < desiredFloor) {

goUp();

} else {

goDown();

}

} // end of while loop

} // end of method

} // end of class

Local variable

Instance variables
(fields)

Scope of
desiredFloor

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example shows some code for generating the square root of number. The boolean expression
squares the current value of the square root and checks to see whether it is close to the number of
which you are trying to find the square root. If it is close enough (the expression returns true), the
program execution skips the statements in the while block and continues with the
System.out.println() statement that outputs the square root. If the value is not yet close
enough, the code within the block runs and does two things:

• Adjusts the value of squareRoot so that it will be closer the next time it is checked
• Prints the current “guessed” value of squareRoot

Java SE 7 Fundamentals 9 - 9

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

while Loop: Example 1

Example:
float square = 4; // number to find sq root of

float squareRoot = square; // first guess

while (squareRoot * squareRoot - square > 0.001) { // How accurate?

squareRoot = (squareRoot + square/squareRoot)/2;

System.out.println("Next try will be " + squareRoot);

}

System.out.println("Square root of " + square + " is " + squareRoot);

Result:
Next try will be 2.5

Next try will be 2.05

Next try will be 2.0006099

Next try will be 2.0

The square root of 4.0 is 2.0

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example in the slide shows how long it would take to double your money at a particular
interest rate. The while loop’s boolean expression checks to see whether your money (converted
to pennies) has doubled. If it has not, the block of the loop adds the interest of another year to the
current total, and the loop repeats the boolean expression check.
Note: Converting to pennies is done to simplify the example so that the int type can be used.

Java SE 7 Fundamentals 9 - 10

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

while Loop: Example 2

Example:
int initialSum = 500;

int interest = 7; // per cent

int years = 0;

int currentSum = initialSum * 100; // Convert to pennies

while (currentSum <= 100000) {

currentSum += currentSum * interest/100;

years++;

System.out.println("Year " + years + ": " + currentSum/100);

}

Result:

... < some results not shown > ...

Year 9: 919

Year 10: 983

Year 11: 1052

The while loop iterates 11
times before the boolean test

evaluates to true.

Check if money has
doubled yet.

If not doubled,
add another

year’s interest.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Loops are often used to repeat a set of commands a specific number of times. You can easily do
this by declaring and initializing a counter (usually of type int), incrementing that variable inside
the loop, and checking if the counter has reached a specific value in the while boolean
expression.
Although this works, Java has a special counter loop (a for loop), which is covered in the
following slides.

Java SE 7 Fundamentals 9 - 11

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

System.out.println(" /*");

int counter = 0;

while (counter < 4) {

System.out.println(" *");

counter ++;

}

System.out.println(" */");

while Loop with Counter

/*

*

*

*

*

*/

Output:

Example:

Print an asterisk and
increment the counter.

Check to see if counter
has exceeded 4.

Declare and
initialize a

counter variable.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 12

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Create a while loop
• Develop a for loop
• Nest a for loop and a while loop
• Use an array in a for loop
• Code and nest a do/while loop
• Compare loop constructs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In the for loop, the three expressions needed for a loop that runs a set number of times are all
moved into the parentheses after the for keyword. This makes the for loop more compact and
readable.

Java SE 7 Fundamentals 9 - 13

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

for Loop

int counter = 0;

while (counter < 4) {

System.out.println(" *");

counter ++;

}

for (int counter = 0 ; counter < 4 ; counter++) {

System.out.println(" *");

}

for loop:

while loop:

counter increment
goes here

Counter increment
goes here.

Boolean expression
remains here.

counter variable
initialization
moves here

Counter variable
initialization
moves here.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Notice that for loops are very versatile; you can initialize more than one variable in the first part
and modify more than one variable in the third part of the for statement. Also, the type need not
be an int.
The code in the slide declares two Strings and, as it loops, appends to one String while removing
from the other String. These changes are in the third part of the for statement. This part is for
updates and, although often used for incrementing the String, can be used for any kind of update
(as shown here).
The output of the loop is:
|------

||-----

|||----

||||---

|||||--

||||||-

Java SE 7 Fundamentals 9 - 14

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Developing a for Loop

Syntax:
for (initialize[,initialize]; boolean_expression; update[,update]) {

code_block;

}

for (String i = "|", t = "------";

i.length() < 7 ;
i += "|", t = t.substring(1)) {

System.out.println(i + t);

}

Example:

The three
parts of the
for loop

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 15

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Create a while loop
• Develop a for loop
• Nest a for loop and a while loop
• Use an array in a for loop
• Code and nest a do/while loop
• Compare loop constructs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code in the slide shows a simple nested loop to output a block of @ symbols with height and
width given in the initial local variables. Notice how the outer code prints a new line to start a new
row, while the inner loop uses the print() method of System.out to print an @ symbol for every
column.

Java SE 7 Fundamentals 9 - 16

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Nested for Loop

Code:

int height = 4;

int width = 10;

for (int rowCount = 0; rowCount < height; rowCount++) {

for (int colCount = 0; colCount < width; colCount++) {

System.out.print("@");

}

System.out.println();

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Here’s a nested while loop that is a little more complex than the previous for example. The
nested loop tries to guess a name by building a String of the same length completely at random.
Looking at the inner loop first, the code initializes char asciiChar to a lowercase letter
randomly. These chars are then added to String guess, until that String is as long as the
String that it is being matched against. Notice the convenience of the concatenation operator here,
allowing concatenation of a String and a char.
The outer loop tests to see if the guess is the same as a lowercase version of the original name.
If it is not, guess is reset to an empty String and the inner loop runs again, usually millions of
times for a five-letter name. (Note that names longer than five letters will take a very long time.)

Java SE 7 Fundamentals 9 - 17

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Nested while Loop

Code:

String name = "Lenny";

String guess = "";

int numTries = 0;

while (!guess.equals(name.toLowerCase())) {

guess = "";

while (guess.length() < name.length()) {

char asciiChar = (char)(Math.random() * 26 + 97);

guess = guess + asciiChar;

}

numTries++;

}

System.out.println(name + " found after " + numTries + " tries!");

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 18

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Create a while loop
• Develop a for loop
• Nest a for loop and a while loop
• Use an array in a for loop
• Code and nest a do/while loop
• Compare loop constructs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 19

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Loops and Arrays

One of the most common uses of loops is when working with
sets of data.
All types of loops are useful:
• while loops (to check for a particular value
• for loops (to go through the entire array)
• Enhanced for loops

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Output:
Age is 27

Age is 12

Age is 82

…

Age is 1

Java SE 7 Fundamentals 9 - 20

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

for Loop with Arrays

ages (array of int types)

127 8212 …

for (int i = 0; i < ages.length; i++) {

System.out.println("Age is " + ages[i]);

}

index starts at zeroIndex starts at 0.
Last index of array is
ages.length – 1.

ages[i] accesses array
values as i goes from 0 to

ages.length – 1.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 21

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Setting Values in an Array

ages (array of int types)

1010 1010 …

for (int i = 0; int < ages.length; i++) {

ages[i] = 10;

}

Loop accesses each
element of array in turn.

Each element in the
array is set to 10.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 22

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Enhanced for Loop with Arrays

ages (array of int types)

127 8212 …

for (int age : ages) {

System.out.println("Age is " + age);

}

Loop accesses each
element of array in turn.

Each iteration returns
the next element of the

array in age.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

ArrayLists can be iterated through in exactly the same way as arrays.

Java SE 7 Fundamentals 9 - 23

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Enhanced for Loop with ArrayLists

names (ArrayList of String types)

George …

for (String name : names) {

System.out.println("Name is " + name);

}

Loop accesses
each element of
ArrayList in turn.

Each iteration returns
the next element of the

ArrayList in name.

Jill Xinyi Ravi

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

There are two useful keywords that can be used when you work with loops: break and
continue. break enables you to jump out of a loop, while continue sends you back to the
start of the loop.
The example in the slide shows the use of break. Assuming that the code is to find out if any of
the scores in the array are above passmark, you can set passed to true and jump out of the
loop as soon as the first such score is found.

Java SE 7 Fundamentals 9 - 24

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Output:

Using break with Loops

break example:
int passmark = 12;

boolean passed = false;

int[] score = { 4, 6, 2, 8, 12, 34, 9 };

for (int unitScore : score) {

if (unitScore > passmark) {

passed = true;

break;

}

}

System.out.println("One or more units passed? " + passed);

One or more units passed? true

There is no need to go
through the loop again,

so use break.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example in this slide shows the use of continue on a similar example. In this case, assume
that you want to know if a certain number of passes has been achieved. So the approach is to
check first to see whether the unit's score is not enough. If this is the case, the continue
command goes to the start of the loop again. If the score is sufficient, the number of passesReqd
is decremented and further processing possibly takes place.
This example and the previous one are intended only to show what the functions of break and
continue are, and not to show particular programming techniques. Both have a similar function:
They ensure that parts of the loop are not processed unnecessarily. Sometimes this can also be
achieved by the design of if blocks, but it is useful to have these two options in complex
algorithms.

Java SE 7 Fundamentals 9 - 25

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Using continue with Loops

continue example:
int passMark = 15;

int passesReqd = 3;

int[] score = { 4, 6, 2, 8, 12, 34, 9 };

for (int unitScore : score) {

if (score[i] < passMark) {

continue;

}

passesReqd--;

// Other processing

}

System.out.println("Units still reqd " + Math.max(0,passesReqd));

If unit failed, go on
to check next unit.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 26

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Create a while loop
• Develop a for loop
• Nest a for loop and a while loop
• Use an array in a for loop
• Code and nest a do/while loop
• Compare loop constructs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The do/while loop is a one-to-many iterative loop: The condition is at the bottom of the loop and
is processed after the body. The body of the loop is, therefore, processed at least once. If you
want the statement or statements in the body to be processed at least once, use a do/while loop
instead of a while or for loop. The syntax for the do/while loop is shown in the slide.

Java SE 7 Fundamentals 9 - 27

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Coding a do/while Loop

Syntax:
do {

code_block;

}

while (boolean_expression); // Semicolon is mandatory.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The setFloor method of the Elevator class uses a do/while loop to determine whether the
elevator is at the chosen floor. If the value of the currentFloor variable is not equal to the value
of the desiredFloor variable, the elevator continues moving either up or down.

Java SE 7 Fundamentals 9 - 28

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Coding a do/while Loop

setFloor() {

// Normally you would pass the desiredFloor as an argument to the

// setFloor method. However, because you have not learned how to

// do this yet, desiredFloor is set to a specific number (5)

// below.

int desiredFloor = 5;

do {

if (currentFloor < desiredFloor) {

goUp();

}

else if (currentFloor > desiredFloor) {

goDown();

}

}

while (currentFloor != desiredFloor);

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 29

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Create a while loop
• Develop a for loop
• Nest a for loop and a while loop
• Use an array in a for loop
• Code and nest a do/while loop
• Compare loop constructs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 30

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Comparing Loop Constructs

• Use the while loop to iterate indefinitely through
statements and to perform the statements zero or more
times.

• Use the do/while loop to iterate indefinitely through
statements and to perform the statements one or more
times.

• Use the for loop to step through statements a predefined
number of times.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c

Java SE 7 Fundamentals 9 - 31

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

________________ enable you to check and recheck a
decision to execute and re-execute a block of code.
a. Classes
b. Objects
c. Loops
d. Methods

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c

Java SE 7 Fundamentals 9 - 32

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

Which of the following loops always executes at least once?
a. The while loop
b. The nested while loop
c. The do/while loop
d. The for loop

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 33

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Create a while loop
• Nest a while loop
• Develop and nest a for loop
• Code and nest a do/while loop
• Use an ArrayList in a for loop
• Compare loop constructs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 34

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 9-1 Overview:
Writing a Class That Uses a for Loop

In this practice, you create the Counter class that uses a
simple for loop to print a sequence of numbers.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 35

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 9-2 Overview:
Writing a Class That Uses a while Loop

In this practice, you write a class named Sequence that
displays a sequence starting with the numbers 0 and 1.
Successive numbers in the sequence are the sum of the
previous two numbers (for example, 0 1 1 2 3 5 8 13 21…).
This sequence is also called the Fibonacci series.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 36

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Challenge Practice 9-3 Overview:
Converting a while Loop to a for Loop

In this practice, you convert an existing while loop to a for
loop. During this practice, you:
• Create a new class, ChallengeSequence, based on the

Sequence class you created in the last practice
• Modify the displaySequence method to use a for loop

instead of a while loop

Note: This practice (9-3) is an optional Challenge practice.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 37

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 9-4 Overview:
Using for Loops to Process an ArrayList

In this practice, you create two new methods in two different
classes. This practice contains two sections:
• Using a for loop with the VacationScaleTwo class
• Using an enhanced for loop with the NamesListTwo

class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 38

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 9-5 Overview:
Writing a Class That Uses a Nested for Loop

to Process a Two-Dimensional Array

In this practice, you create and process a two-dimensional
array using a nested for loop.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 9 - 39

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Challenge Practice 9-6 Overview:
Adding a Search Method to ClassMap

In this practice, you add another method to ClassMap. This
method searches through deskArray to find a certain name.

Note: This practice (9-6) is an optional Challenge practice.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Working with Methods
and Method Overloading

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 2

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

• Declare methods with arguments and return values

• Declare static methods and variables

• Create an overloaded method

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 3

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Creating and invoking methods

• Static methods and variables

• Method overloading

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 4

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating and Invoking Methods

[modifiers] return_type method_identifier ([arguments]) {

method_code_block

}

Syntax:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

This is an example of a simple method that does not receive any arguments or return a value.

Java SE 7 Fundamentals 10 - 5

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Basic Form of a Method

public void display () {

System.out.println("Shirt ID: " + shirtID);

System.out.println("Shirt description:" + description);

System.out.println("Color Code: " + colorCode);

System.out.println("Shirt price: " + price);

} // end of display method

The void
keyword

indicates that the
method does not
return a value.

Empty parentheses
indicate that no

arguments are passed to
the method.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In the example in this slide, display() is called. But because the Shirt object has not had any of
its fields set, the default values for those fields are displayed.

Java SE 7 Fundamentals 10 - 6

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Invoking a Method in a Different Class

public class ShirtTest {

public static void main (String[] args) {

Shirt myShirt;

myShirt = new Shirt();

myShirt.display();

}

}

Item ID: 0

Item description:-description required-

Color Code: U

Item price: 0.0

Output:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In the previous example, the ShirtTest class calls the display() method from within another
method (the main method). Therefore, the main method is referred to as the calling method
because it is invoking or “calling” another method to do some work. Conversely, the display
method is referred to as the worker method because it does some work for the main method.

When a calling method calls a worker method, the calling method stops execution until the worker
method is done. After the worker method has completed, program flow returns to the point after
the method invocation in the calling method.

Java SE 7 Fundamentals 10 - 7

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Caller and Worker Methods

Caller

Worker

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 8

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Passing Arguments and Returning Values

1
2
3
4
5
6
7

1
2
3
4

Value passed from
caller method to
worker method Object

method

Value received by
worker method

Value returned to
caller method

1 2

3

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example in the slide shows the setFloor() method (introduced in the lesson titled “Using
Loop Constructs”). The method receives a value of int type and gives it the name
desiredFloor. desiredFloor is now a local variable whose scope is the method.

It is called (in this case, from a calling method in another class) by using the dot notation and
including the argument.

Note: A variable defined in the method declaration is called a method parameter, whereas a value
passed into the method call is called an argument.

Java SE 7 Fundamentals 10 - 9

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating a Method with a Parameter

public void setFloor(int desiredFloor) {

while (currentFloor != desiredFloor){
if (currentFloor < desiredFloor){

goUp();

}

else {

goDown();

}

}

The setFloor() method
receives an argument of

type int, naming it
desiredFloor.

Elevator theElevator = new Elevator();

theElevator.setFloor(4); // Send elevator to the fourth floor

A call to the setFloor()
method, passing the
value 4, of type int

Caller:

Worker:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example in the slide shows the checkDoorStatus() method being called by the caller
method. Note how checkDoorStatus() defines that it will return a boolean. Any single type can
be defined here, or the keyword void is used if the method does not return a value.

The value is returned to the calling statement by the return statement. Note that because the
method has been declared with a return type of boolean, NetBeans indicates an error if there is
no return or if the return is of an incorrect type.

Java SE 7 Fundamentals 10 - 10

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating a Method with a Return Value

public class Elevator {

public boolean doorOpen=false;

public int currentFloor = 1;

... < lines of code omitted > ...

public boolean checkDoorStatus() {

return doorOpen ;

}

}

... < lines of code omitted > ...

boolean isOpen = theElevator.checkDoorStatus() // Is door open?

Caller:

Worker:

The local variable
isOpen indicates if the
elevator door is open.

Elevator has the doorOpen
field to indicate the state of the

elevator door.

The type returned by the
method is defined before

the method name.

The return statement returns
the value in doorOpen.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Calling a method in the same class is very straightforward. You can simply use the method name
without a reference and dot notation. This is the same as when accessing a field; you can simply
use the field name.

However, if you have local variables with similar names and you want to make it obvious that your
code is accessing a field or method of the current object, you can use the this keyword with dot
notation. this is a reference to the current object.

Example:

this.checkDoorStatus()

Java SE 7 Fundamentals 10 - 11

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Invoking a Method in the Same Class

public class Elevator {

public boolean doorOpen=false;

public int currentFloor = 1;

public final int TOP_FLOOR = 5;

public final int BOTTOM_FLOOR = 1;

public void openDoor() {

// Check if door already open

if (!checkDoorStatus()) {

// door opening code

}

} Evaluates to true if
door is closed

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

When the method is invoked, the values of the arguments are used to initialize newly created
parameter variables, each of the declared type, before execution of the body of the method or
constructor. This is true for both primitive types and reference types. (Objects are not passed to
methods.)

This means that in the example in the slide, the reference myShirt is passed by value into the
changeShirtColor()method. The reference theShirt inside the method is a different
reference than myShirt. However, they both point to the same object, so the change to the color
made using theShirt is printed out by accessing myShirt.color.

Java SE 7 Fundamentals 10 - 12

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

How Arguments Are Passed to Methods

public class ShirtTest {

public static void main (String[] args) {

Shirt myShirt = new Shirt();

System.out.println("Shirt color: " + myShirt.colorCode);

changeShirtColor(myShirt, 'B');

System.out.println("Shirt color: " + myShirt.colorCode);

}

public static void changeShirtColor(Shirt theShirt, char color) {

theShirt.colorCode = color; }

}

theShirt is a new
reference of type

Shirt.

Output:

Shirt color: U

Shirt color: B

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The diagram in the slide shows how the value of the myShirt reference passed into the
changeShirtColor()method is used to initialize a new Shirt reference (in this case, called
theShirt).

Java SE 7 Fundamentals 10 - 13

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Passing by Value

0x034009

0x99f311

12

15.99

B

0x034009

shirtID

price

colorCode

Shirt myShirt = new Shirt();
changeShirtColor(myShirt, 'B');

myShirt

theShirt

Before
changeShirtColor() is

invoked, this value is U.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Here is another example with a small change in the code of the changeShirtColor() method.
In this example, the reference value passed into the method is assigned to a new shirt. Then, as
before, the color of the Shirt object is changed to 'B'. But in this case, the line printed after the
method call shows the color to still be 'U' (Unset).

This illustrates that the reference myShirt is indeed passed by value. Changes made to
references passed into worker methods do not affect the references in the calling method. (Note
that this discussion is about changes made to references passed into the method, and not to the
objects they point to.)

Java SE 7 Fundamentals 10 - 14

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Passing by Value

public class ShirtTest {

public static void main (String[] args) {

Shirt myShirt = new Shirt();

System.out.println("Shirt color: " + myShirt.colorCode);

changeShirtColor(myShirt, 'B');

System.out.println("Shirt color: " + myShirt.colorCode);

}

public static void changeShirtColor(Shirt theShirt, char color) {

theShirt = new Shirt();

theShirt.colorCode = color;

}

Output:

Shirt color: U

Shirt color: U

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The diagram in the slide shows the situation that results from the code in the previous slide.

When myShirt is passed into the changeShirtColor() method, a new reference variable,
theShirt, is initialized with the value of myShirt. Initially, this reference points to the object that
the myShirt reference points to. But after a new Shirt is assigned to theShirt, any changes
made using theShirt affect only this new Shirt object.

Java SE 7 Fundamentals 10 - 15

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Passing by Value

0x034009

0x99f311

12

15.99

U

12

15.99

B

0x034009

shirtID

price

colorCode

shirtID

price

colorCode

Shirt myShirt = new Shirt();
changeShirtColor(myShirt, 'B');

myShirt

theShirt

0x99f311

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 16

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Advantages of Using Methods

Methods:

• Make programs more readable and easier to maintain

• Make development and maintenance quicker

• Are central to reusable software

• Allow separate objects to communicate and to distribute
the work performed by the program

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b, c

Java SE 7 Fundamentals 10 - 17

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

Which of the following statements are true? (Choose all that
apply.)

a. A class can contain only one method declaration.

b. A method must always specify a return type.

c. The same method can be both a worker method and a
calling method.

d. Arguments need not be listed in the same order in the
method invocation as in the method signature.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 18

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Invoking Methods: Summary

• There is no limit to the number of method calls that a
calling method can make.

• The calling method and the worker method can be in the
same class or in different classes.

• The way you invoke the worker method is different
depending on whether it is in the same class or in a
different class from the calling method.

• You can invoke methods in any order.
– Methods do not need to be completed in the order in which

they are listed in the class where they are declared (the class
containing the worker methods).

• All arguments passed into a method are passed by value.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 19

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Creating and invoking methods

• Static methods and variables

• Method overloading

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

This slide revisits the code used in the lesson titled “Using Loop Constructs,” but one part of
it―the part where a random letter is generated―was not explained in that lesson.

ASCII character values encode lowercase letters a to z from 97 to 122. By generating a number in
that range and putting it into a char, you can use the concatenation operator to build a String as
shown here.

Note: Java actually uses Unicode, not ASCII, but the first 128 characters in Unicode and ASCII
are the same.

In the next slide, you look a little closer at the Math.random() method and what kind of method it
is.

Java SE 7 Fundamentals 10 - 20

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Math Utilities

String name = "Lenny";

String guess = "";

int numTries = 0;

while (!guess.equals(name.toLowerCase())) {

guess = "";

while (guess.length() < name.length()) {

char asciiChar = (char)(Math.random() * 26 + 97);

guess = guess + asciiChar;

}

numTries++;

}

System.out.println(name + " found after " + numTries + " tries!");

Creates a
random letter

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The screenshot shows a small selection of methods from the Math class. The method in focus
here is random(). It returns a double between 0 and 1. So to generate a double between 0 and
10, simply multiply by 10:

Math.random * 10

Or, to generate a double between 1 and 10, multiply by 9 and add 1.

Often you will want an integer rather than a double, so all you need to do is cast to int or, in the
case of the example on the previous page, to char.

Notice that the method is static, as indeed are all the methods in Math. This means that Math
does not need to be instantiated to call any of its methods (in fact, Math cannot be instantiated).

You can call the static methods of a class with the following syntax:

<classname>.<method_name>

Java SE 7 Fundamentals 10 - 21

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Static Methods in Math

Notice that the
type is double

and that it is static.

This is the
random method.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

So far, you have learned how to access methods and variables by creating an object of the class
that the method or variable belongs to, and invoking the method or accessing the variable (if it is a
public variable). Methods and variables that are unique to an instance are called instance methods
and instance variables.

You have also been using methods that do not require object instantiation, such as the main
method. These are called class methods or static methods; you can invoke them without creating
an object first.

Similarly, the Java programming language allows you to create static variables or class variables,
which you can use without creating an object.

Java SE 7 Fundamentals 10 - 22

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating static Methods and Variables

Methods and nonlocal variables can be static.

• They belong to the class and not to the object.
• They are declared using the static keyword:

static Properties getProperties()

• To invoke static methods:
Classname.method();

• To access static variables in another class:
Classname.attribute_name;

• To access static variables in the same class:
attribute_name;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The slide shows an example of a method that could be added to the Shirt class to convert
numerical shirt sizes to sizes such as small, medium, and large. This method is a static method
because:

• It does not directly use any attributes of the Shirt class

• You might want to invoke the method even if you do not have a Shirt object

The convertShirtSize method accepts a numerical size, determines the corresponding
character size (S, M, L, or X), and returns the character size.

For example, to access the convertShirtSize() static method of the Shirt class:

char size = Shirt.convertShirtSize(16);

Java SE 7 Fundamentals 10 - 23

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating static Methods and Variables

public static char convertShirtSize(int numericalSize) {

if (numericalSize < 10) {

return 'S';

}

else if (numericalSize < 14) {

return 'M';

}

else if (numericalSize < 18) {

return 'L';

}

else {

return 'X';

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

You can also use the static keyword to declare a class variable. This means that there can be
only one copy of the variable in memory associated with a class, rather than a copy for each
object instance.

In the example in the slide, salesTAX is a static variable. You can access it from any method in
any class by using the class name of its class. Assume that it is in a class called TaxUtilities.
Then you could access it by using the code:

TaxUtilities.salesTAX

Or, if TaxUtilities has methods, those methods (static or instance) can access the variable by
name without the class name:

salesTAX

Note that variables can have both the static and final modifier to indicate that there is only one
copy of the variable and that the contents of the variable cannot be changed. The PI variable in
the Math class is a static final variable.

Java SE 7 Fundamentals 10 - 24

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

static Variables

• Declaring static variables:

static double salesTAX = 8.25;

• Accessing static variables:

Classname.variable;

• Example:
double myPI;

myPI = Math.PI;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Certain Java class libraries, such as the System and the Math class, contain only static methods
and variables. The System class contains utility methods for handling operating system–specific
tasks. (They do not operate on an object instance.) For example, the getProperties method of
the System class gets information about the computer that you are using.

The Math class contains utility methods for math operations.

Java SE 7 Fundamentals 10 - 25

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Static Methods and Variables in the Java API

Examples
• Some functionality of the Math class:

– Exponential

– Logarithmic

– Trigonometric

– Random

– Access to common mathematical constants, such as the
value pi (Math.PI)

• Some functionality of the System class:
– Retrieving environment variables

– Access to the standard input and output streams
– Exiting the current program (System.exit())

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 26

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Static Methods and Variables in the Java API

When to declare a static method or variable:

• Performing the operation on an individual object or
associating the variable with a specific object type is not
important.

• Accessing the variable or method before instantiating an
object is important.

• The method or variable does not logically belong to an
object, but possibly belongs to a utility class, such as the
Math class, included in the Java API.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 27

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Creating and invoking methods

• Static methods and variables

• Method overloading

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example shows some code from the lesson on loops, rewritten as a method that has two
parameters (the initial sum of money and the interest rate) and returns the number of years
required to double that initial sum.

The callout shows the part of the method declaration that is called the method signature.

The method signature of a method is the unique combination of the method name and the
number, types, and order of its parameters. The method signature does not include the return
type.

Java SE 7 Fundamentals 10 - 28

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Method Signature

public int getYearsToDouble(int initialSum, int interest) {

int interest = 7; // per cent

int years = 0;

int currentSum = initialSum * 100; // Convert to pennies

int desiredSum = currentSum * 2;

while (currentSum <= desiredSum) {

currentSum += currentSum * interest/100;

years++;

}

}

The method
signature

The method
type

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In the Java programming language, a class can contain several methods that have the same
name but different arguments (so the method signature is different). This concept is called method
overloading. Just as you can distinguish between two students named “Jim” in the same class by
calling them “Jim in the green shirt” and “Jim with the beeper,” you can distinguish between two
methods by their name and arguments.

Java SE 7 Fundamentals 10 - 29

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Method Overloading

Overloaded methods:

• Have the same name

• Have different signatures
– Different number and/or different type and/or different order

of parameters

• May have different functionality or similar functionality

• Are widely used in the foundation classes

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example in the slide shows three methods to add two numbers, such as two int types or two
float types. With method overloading, you can create several methods with the same name and
different signatures.

The first sum method accepts two int arguments and returns an int value. The second sum
method accepts two float arguments and returns a float value. The third sum method accepts
an int and a float as arguments and returns a float.

To invoke any of the sum methods, the compiler compares the method signature in your method
invocation against the method signatures in a class.

Java SE 7 Fundamentals 10 - 30

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Using Method Overloading

public final class Calculator {

public static int sum(int numberOne, int numberTwo){

System.out.println("Method One");

return numberOne + numberTwo;

}

public static float sum(float numberOne, float numberTwo) {

System.out.println("Method Two");

return numberOne + numberTwo;

}

public static float sum(int numberOne, float numberTwo) {

System.out.println("Method Three");

return numberOne + numberTwo;

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code example in the slide has a main method that invokes each of the previous sum methods
of the Calculator class.

Java SE 7 Fundamentals 10 - 31

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Using Method Overloading

public class CalculatorTest {

public static void main(String [] args) {

int totalOne = Calculator.sum(2,3);

System.out.println("The total is " + totalOne);

float totalTwo = Calculator.sum(15.99F, 12.85F);

System.out.println(totalTwo);

float totalThree = Calculator.sum(2, 12.85F);

System.out.println(totalThree);

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Many methods in the Java API are overloaded, including the System.out.println method.
The table in the slide shows all the variations of the println method.

Java SE 7 Fundamentals 10 - 32

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Method Overloading and the Java API

Method Use
void println() Terminates the current line by writing the line

separator string

void println(boolean x) Prints a boolean value and then terminates the line

void println(char x) Prints a character and then terminates the line

void println(char[] x) Prints an array of characters and then terminates
the line

void println(double x) Prints a double and then terminates the line

void println(float x) Prints a float and then terminates the line

void println(int x) Prints an int and then terminates the line

void println(long x) Prints a long and then terminates the line

void println(Object x) Prints an object and then terminates the line

void println(String x) Prints a string and then terminates the line

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c

Java SE 7 Fundamentals 10 - 33

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

Which method corresponds to the following method call?
myPerson.printValues(100, 147.7F, "lavender");

a. public void printValues (int pantSize,
float ageInYears)

b. public void printValues (pantSize,
float ageInYears, favoriteColor)

c. public void printValues (int pantSize,
float ageInYears, String favoriteColor)

d. public void printValues (float ageInYears,
String favoriteColor, int pantSize)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 34

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Declare methods with arguments and return values

• Declare static methods and variables

• Create an overloaded method

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 35

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 10-1 Overview:
Writing a Method with Arguments

and Return Values

In this practice, you create a class to order more than one shirt,
and then display the total order value of the shirts.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 10 - 36

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Challenge Practice 10-2 Overview:
Writing a Class That Contains

an Overloaded Method
In this practice, you write a Customer class with an overloaded
method called setCustomerInfo().

Note: This practice (10-2) is an optional Challenge practice.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Using Encapsulation and Constructors

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 2

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

• Use access modifiers

• Describe the purpose of encapsulation

• Implement encapsulation in a class

• Create a constructor

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 3

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Encapsulation

• Constructors

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 4

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Overview

• Encapsulation means hiding object fields by making all
fields private:
– Use getter and setter methods.

– In setter methods, use code to ensure that values are valid.

• Encapsulation mandates programming to the interface:
– Data type of the field is irrelevant to the caller method.

– Class can be changed as long as interface remains same.

• Encapsulation encourages good object-oriented (OO)
design.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code in the slide shows the goUp() method and the currentFloor field. It is the
corresponding method to the goDown() method previously discussed, and prevents the
elevator from trying to go above the top floor.

But the code shown here has a problem. The goUp() method can be circumvented; there is
nothing to stop the currentFloor field from being modified directly.

Java SE 7 Fundamentals 11 - 5

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

public Modifier

public class Elevator {

public boolean doorOpen=false;

public int currentFloor = 1;

public final int TOP_FLOOR = 10;

public final int MIN_FLOOR = 1;

... < code omitted > ...

public void goUp() {

if (currentFloor == TOP_FLOOR) {

System.out.println("Cannot go up further!");

}

if (currentFloor < TOP_FLOOR) {

currentFloor++;

System.out.println("Floor: " + currentFloor);

}

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 6

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Dangers of Accessing a public Field

Elevator theElevator = new Elevator();

theElevator.currentFloor = 15; Could cause a problem!

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In the example shown, the fields have all been made private. Now they cannot be accessed
from a caller method that is outside this class. So any calling method that wants to control the
floor that the elevator will go to must do so through its public methods.

Java SE 7 Fundamentals 11 - 7

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

private Modifier

public class Elevator {

private boolean doorOpen=false;

private int currentFloor = 1;

private final int TOP_FLOOR = 10;

private final int MIN_FLOOR = 1;

... < code omitted > ...

public void goUp() {

if (currentFloor == TOP_FLOOR) {

System.out.println("Cannot go up further!");

}

if (currentFloor < TOP_FLOOR) {

currentFloor++;

System.out.println("Floor: " + currentFloor);

}

}

}

None of these fields
can now be

accessed from
another class using

dot notation.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 8

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Trying to Access a private Field

Elevator theElevator = new Elevator();

theElevator.currentFloor = 15; not permitted

NetBeans will
show an error.
You can get an
explanation if

you place your
cursor here.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Remember the setFloor() method? Just like fields, methods are declared with a modifier.
Can you think of a reason why this method might be best declared with a private modifier?

Well, if the elevator works like most elevators do, the controls operated by the general public
(either the button to call an elevator, or the button to request a floor) do not directly affect the
elevator.

Instead, a user presses a button―for example, a request for an elevator to go to the fifth floor.
The elevator does not respond immediately to the request, but puts the request in a queue
and then eventually, perhaps after bringing users already on the elevator down to the first
floor, goes to the fifth floor.

It may be that the only public method needed is requestFloor(), at least for the software
that controls the buttons used by the general public.

Java SE 7 Fundamentals 11 - 9

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

private Modifier on Methods

public class Elevator {

... < code omitted > ...

private void setFloor() {

int desiredFloor = 5;

while (currentFloor != desiredFloor){

if (currentFloor < desiredFloor) {

goUp();

} else {

goDown();

}

}

}

public void requestFloor(int desiredFloor) {

... < contains code to add requested floor to a queue > ...

}

Should this method
be private?

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

When classes are encapsulated, other objects interact with only a few parts (methods) of
every other class.

In the example of the elevator, the control program that is triggered by the buttons can only
call the requestFloor() method of Elevator. And, as long as Elevator implements this
method, it does not matter exactly how it is implemented. The method could store requests in
a binary array where setting an element to true indicates that there is a request on the floor
with that index. Or an ArrayList could be used to store the numbers of the floors requested.

There might also be a moveElevator() method that is triggered by something, perhaps by
the doors closing. Again, as long as this method moveElevator() is implemented, its
implementation can be changed to change the way in which the elevator responds to requests
coming in at the same time from different floors.

Java SE 7 Fundamentals 11 - 10

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Interface and Implementation

Elevator 1 Going Up Elevator 2 Going Down

Elevator
Control Panel

Public Access

Public Access

Public Access

Public Access1

2

3

4

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

If you make attributes private, how can another object access them? One object can access
the private attributes of a second object if the second object provides public methods for each
of the operations that are to be performed on the value of an attribute.

For example, it is recommended that all fields of a class should be private, and those that
need to be accessed should have public methods for setting and getting their values.

This ensures that, at some future time, the actual field type itself could be changed, if that
were advantageous. Or the getter or setter methods could be modified to control how the
value could be changed, in the same way you wrote code to ensure that the currentFloor
field of the elevator could not be set to an invalid value.

Java SE 7 Fundamentals 11 - 11

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Get and Set Methods

public class Shirt {

private int shirtID = 0; // Default ID for the shirt

private String description = "-description required-"; // default

// The color codes are R=Red, B=Blue, G=Green, U=Unset

private char colorCode = 'U';

private double price = 0.0; // Default price for all items

public char getColorCode() {

return colorCode;

}

public void setColorCode(char newCode) {

colorCode = newCode;

}

// Additional get and set methods for shirtID, description,

// and price would follow

} // end of class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Though the code for the Shirt class is syntactically correct, the setcolorCode method
does not contain any logic to ensure that the correct values are set.

The code example in the slide successfully sets an invalid color code in the Shirt object.

However, because ShirtTest accesses a private field on Shirt via a setter method,
Shirt can now be recoded without modifying any of the classes that depend on it.

Java SE 7 Fundamentals 11 - 12

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Using Setter and Getter Methods

public class ShirtTest {

public static void main (String[] args) {

Shirt theShirt = new Shirt();

char colorCode;

// Set a valid colorCode

theShirt.setColorCode('R');

colorCode = theShirt.getColorCode();

// The ShirtTest class can set and get a valid colorCode

System.out.println("Color Code: " + colorCode);

// Set an invalid color code

theShirt.setColorCode('Z'); not a valid color code
colorCode = theShirt.getColorCode();

// The ShirtTest class can set and get an invalid colorCode

System.out.println("Color Code: " + colorCode);

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In the slide is another version of the Shirt class. However, in this class, before setting the
value, the setter method ensures that the value is valid. If it is not valid, the colorCode field
remains unchanged and an error message is printed.

Java SE 7 Fundamentals 11 - 13

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

public void setColorCode(char newCode) {

switch (newCode) {

case 'R':

case 'G':

case 'B':

colorCode = newCode;

break;

default:

System.out.println("Invalid colorCode. Use R, G, or B");

}

}

Setter Method with Checking

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 14

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Using Setter and Getter Methods

public class ShirtTest {

public static void main (String[] args) {

Shirt theShirt = new Shirt();

System.out.println("Color Code: " + theShirt.getColorCode());

// Try to set an invalid color code

Shirt1.setColorCode('Z'); not a valid color code
System.out.println("Color Code: " + theShirt.getColorCode());

}

Color Code: U Before call to setColorCode() – shows default value
Invalid colorCode. Use R, G, or B call to setColorCode prints error message
Color Code: U colorCode not modified by invalid argument passed to setColorCode()

Output:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 15

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Encapsulation: Summary

Encapsulation protects data:

• By making all fields private
– Use getter and setter methods.

– In setter methods, use code to check whether values are
valid.

• By mandating programming to the interface
– Data type of the field is irrelevant to the caller method.

– Class can be changed as long as interface remains same.

• By encouraging good OO design

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 16

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Encapsulation

• Constructors

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Assuming you now have setters for all the private fields of Shirt, you could now instantiate
and initialize a Shirt object by instantiating it and then setting the various fields through the
setter methods.

However, Java provides a much more convenient way to instantiate and initialize an object by
using a special method called a constructor.

Java SE 7 Fundamentals 11 - 17

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Initializing a Shirt Object

public class ShirtTest {

public static void main (String[] args) {

Shirt theShirt = new Shirt();

// Set values for the Shirt

theShirt.setColorCode('R');

theShirt.setDescription("Outdoors shirt");

theShirt.price(39.99);

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

All classes have at least one constructor. If the code does not include an explicit constructor,
the Java compiler automatically supplies a no-argument constructor. This is called the default
constructor.

Java SE 7 Fundamentals 11 - 18

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Constructors

• Constructors are method-like structures in a class:
– They have the same name as the class.

– They are usually used to initialize fields in an object.

– They can receive arguments.

– They can be overloaded.

• All classes have at least one constructor:
– If there are no explicit constructors, the Java compiler

supplies a default no-argument constructor.

– If there are one or more explicit constructors, no default
constructor will be supplied.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

• [modifiers] represent several unique Java technology keywords that can modify the
way constructors are accessed. Modifiers are optional (indicated by the square
brackets).

• ClassName is the name of the class and the name of the constructor method. The
name of the constructor must be the same as the ClassName in the class declaration.

• [arguments] represents one or more optional arguments passed to the constructor.

• code_block represents one or more optional lines of code for the constructor.

Java SE 7 Fundamentals 11 - 19

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating Constructors

[modifiers] class ClassName {

[modifiers] ClassName([arguments]) {

code_block

}

}

Syntax:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Shirt example shown in the slide has a constructor that accepts a char value to initialize
the color code for this object. Because setColorCode() ensures that an invalid code
cannot be set, the constructor can just call this method.

Java SE 7 Fundamentals 11 - 20

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating Constructors

public class Shirt {

public int shirtID = 0; // Default ID for the shirt

public String description = "-description required-"; // default

// The color codes are R=Red, B=Blue, G=Green, U=Unset

private char colorCode = 'U';

public double price = 0.0; // Default price all items

// This constructor takes one argument

public Shirt(char colorCode) {

setColorCode(colorCode);

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

As you would expect, passing a valid color code to the Shirt constructor creates a new Shirt
object, and calling display() results in the following output:
Item ID: 0

Item description:-description required-

Color Code: G

Item price: 0.0

However, look at the message you get in NetBeans if you try to call the Shirt constructor with
no arguments (as you have been doing earlier in the course).

The reason for the problem is that if there is no explicit constructor in a class, Java assumes
that you want to be able to instantiate the class and gives you a default no-argument
constructor. Otherwise, how could you instantiate the class?

But if you have one explicit constructor, Java assumes that you might want that to be the only
constructor, and no longer provides a default no-argument implementation.

Java SE 7 Fundamentals 11 - 21

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Initializing a Shirt Object by Using a Constructor

public class ShirtTest {

public static void main (String[] args) {

Shirt theShirt = new Shirt('G');

theShirt.display();

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code in the slide shows three overloaded constructors:

• A default no-argument constructor

• A constructor with one parameter (a char)

• A constructor with two parameters (a char and a double)

This third constructor sets both the colorCode field and the price field. Notice, however,
that the syntax where it sets the colorCode field is one you have not seen yet. It would be
possible to set colorCode with a simple call to setColorCode() just as the previous
constructor does, but there is another option, as shown here.

You can chain the constructors by calling the second constructor in the first line of the third
constructor using the following syntax:

this(argument);

this is a special keyword that is a reference to the current object.

This technique of chaining constructors is especially useful when one constructor has some
(perhaps quite complex) code associated with setting fields. You would not want to duplicate
this code in another constructor and so you would chain the constructors.

Java SE 7 Fundamentals 11 - 22

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Multiple Constructors

public class Shirt {

... < declarations for field omitted > ...

// No-argument constructor

public Shirt() {

// You could add some default processing here

}

// This constructor takes one argument

public Shirt(char colorCode) {

setColorCode(colorCode);

}

public Shirt(char colorCode, double price) {

this(colorCode);

setPrice(price);

}

Chaining the
constructors

If required,
must be added

explicitly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b

Java SE 7 Fundamentals 11 - 23

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

What is the default constructor for the following class?
public class Penny {

String name = "lane";

}

a. public Penny(String name)

b. public Penny()

c. class()

d. String()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 24

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Use access modifiers

• Describe the purpose of encapsulation

• Implement encapsulation in a class

• Create a constructor

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 25

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 11-1 Overview:
Implementing Encapsulation in a Class

In this practice, you create a class containing private attributes
and try to access them in another class. During this practice,
you:

• Implement encapsulation in a class

• Access encapsulated attributes of a class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 26

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Challenge Practice 11-2 Overview:
Adding Validation to the DateThree Class

In this practice, you add a setDate()method to the
DateThree class that performs validation on the date part
values that are passed into the method.

Note: This practice (11-2) is an optional Challenge practice.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 27

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 11-3 Overview:
Creating Constructors to Initialize Objects

In this practice, you create a class and use constructors to
initialize objects.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 11 - 28

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Using Advanced Object-Oriented Concepts

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 2

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

• Describe inheritance

• Test superclass and subclass relations

• Describe polymorphism

• Create a subclass

• Use abstract classes and interfaces

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 3

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Overview of inheritance

• Working with superclasses and subclasses

• Polymorphism and overriding methods

• Interfaces

• The Object class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Inheritance results in a class hierarchy of Java technology classes similar to the taxonomies found
in biology, such as “Blue Whale is a subclass of Whale.”

The diagram in the slide illustrates a hierarchy for whales. “Warm blooded” is an attribute of the
Mammal superclass. The phrase “breathes air” represents some operation that is also a part of the
Mammal superclass. Flukes and flippers are attributes that are specific to the Whale class, which
is a subclass of the Mammal class.

Java SE7 Fundamentals 12 - 4

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Class Hierarchies

Mammal

Warm blooded
Breathes air

Whale

Flukes
Flippers

Blue Whale HumpbackWhale

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 5

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Overview of inheritance

• Working with superclasses and subclasses

• Polymorphism and overriding methods

• Interfaces

• The Object class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The table in the slide shows a set of behaviors for the Shirt class and for a new class: Trousers.
The classes are shown fully encapsulated so that all field values are accessible only through
setter and getter methods. Notice how both classes use many of the same methods; this may
result in code duplication, making maintenance and further expansion more difficult and error
prone.

Java SE7 Fundamentals 12 - 6

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Shirt Trousers

getId()
getPrice()
getSize()
getColor()
getFit()

getId()
getPrice()
getSize()
getColor()
getFit()
getGender()

setId()
setPrice()
setSize()
setColor()
setFit()

setId()
setPrice()
setSize()
setColor()
setFit()
setGender()

display() display()

Common Behaviors

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

If Duke's Choice decides to add a third item, socks, as well as trousers and shirts, you may find
even greater code duplication. The diagram in the slide shows only the getter methods for
accessing the properties of the new objects.

Java SE7 Fundamentals 12 - 7

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Code Duplication

Shirt

getId()

display()

getPrice()

getSize()

getColor()

getFit()

Trousers

getId()

display()

getPrice()

getSize()

getColor()

getFit()

getGender()

Socks

getId()

display()

getPrice()

getSize()

getColor()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

You can eliminate code duplication in the classes by implementing inheritance. Inheritance
enables programmers to put common members (fields and methods) in one class (the superclass)
and have other classes (the subclasses) inherit these common members from this new class.

An object instantiated from a subclass behaves as if the fields and methods of the subclass were
in the object. For example, the Trousers class can be instantiated and have the display()
method called even though the Trousers class does not contain a display() method; it is
inherited from the Clothing class.

Java SE7 Fundamentals 12 - 8

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Shirt

getFit()

Trousers

getFit()

getGender()

Socks

Clothing

getId()

display()

getPrice()

getSize()

getColor()

Inheritance

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Subclasses may implement methods that already have implementations in the superclass. In this
case, the method implementations in the subclass are said to override the method implementation
from the superclass. For example, although the colorCode field (and its accessor methods) is
in the superclass, the color choices may be different in each subclass. So, it may be necessary to
override the get and set methods for this field in the individual subclasses.

Java SE7 Fundamentals 12 - 9

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Overriding Superclass Methods

Methods that exist in the superclass can be:

• Not implemented in the subclass
– The method declared in the superclass is used at runtime.

• Implemented in the subclass
– The method declared in the subclass is used at runtime.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code in the slide shows the fields and the constructor for the Clothing superclass.

Java SE7 Fundamentals 12 - 10

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Clothing Superclass: 1

public class Clothing {

// Fields

private int itemID = 0; // Default ID for all clothing items

private String description = "-description required-"; // default

private char colorCode = 'U'; //'U' is Unset

private double price = 0.0; // Default price for all items

// Constructor

public Clothing(int itemID, String description, char colorCode,

double price) {

this.itemID = itemID;

this.description = description;

this.colorCode = colorCode;

this.price = price; }

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code in the slide shows methods for the Clothing superclass.

Java SE7 Fundamentals 12 - 11

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Clothing Superclass: 2

public void display() {

System.out.println("Item ID: " + getItemID());

System.out.println("Item description: " + description);

System.out.println("Item price: " + getPrice());

System.out.println("Color code: " + getColorCode());

} // end of display method

public String getDescription(){

return description;

}

public double getPrice() {

return price;

}

public int getItemID() {

return itemID;

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code in the slide shows the remaining methods of the Clothing superclass.

Java SE7 Fundamentals 12 - 12

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Clothing Superclass: 3

public char getColorCode() {

return colorCode;

}

public void setItemID(int itemID) {

this.itemID = itemID;

}

public void setDescription(String description) {

this.description = description;

}

public void setColorCode(char colorCode) {

this.colorCode = colorCode;

}

public void setPrice(double price) {

this.price = price;

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 13

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Declaring a Subclass

[class_modifier] class class_identifier extends superclass_identifier

Syntax:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The slide shows the code of the Shirt subclass. The code declares attributes and methods that
are unique to this class. Attributes and methods that are common with the Clothing class are
inherited and do not need to be declared.

It also includes two useful keywords and shows a common way of implementing constructors in a
subclass.

super refers to the superclass. Even if a method of the superclass has been overridden in the
subclass, using the super keyword allows you to invoke the method of the superclass. In the
example in the slide, it is used to invoke the constructor on the superclass. By using this
technique, the constructor on the superclass can be invoked to set all the common attributes of the
object being constructed. Then, as in the example here, additional attributes can be set in
following statements.

The only additional attribute that Shirt has is the fit attribute, and it is set after the invocation of
the superclass constructor. Note the use of the this keyword. In contrast to the super keyword,
this is a reference to the object of this class. It is not necessary to use it in the example in the
slide, but it is common to do so in constructors to help make the code more readable.

Java SE7 Fundamentals 12 - 14

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Declaring a Subclass
(extends, super, and this keywords)

public class Shirt extends Clothing {

private char fit = 'U'; //'U' is Unset, other codes 'S', 'M', or 'L'

public Shirt(int itemID, String description, char colorCode,

double price, char fit) {

super(itemID, description, colorCode, price);

this.fit = fit;

}

public char getFit() {

return fit;

}

public void setFit(char fit) {

this.fit = fit;

}

super is a reference to
methods and attributes of

the superclass.

this is a
reference to
this object.

Ensures that Shirt
inherits members

of Clothing

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Notice that the display() method overrides the display() method of the superclass and is
more specific to the Shirt class.

Likewise, the setColorCode() method overrides the setColorCode() method of the
superclass to check whether a valid value is being used for this class. (The code is not shown
here, but remember that this is one of the advantages of encapsulating fields, as discussed in the
lesson titled “Using Encapsulation and Constructors.”)

Java SE7 Fundamentals 12 - 15

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Declaring a Subclass: 2

//This method overrides display in the Clothing superclass

public void display() {

System.out.println("Shirt ID: " + getItemID());

System.out.println("Shirt description: " + description);

System.out.println("Shirt price: " + getPrice());

System.out.println("Color code: " + getColorCode());

System.out.println("Fit: " + getFit());

} // end of display method

// This method overrides the methods in the superclass

public void setColorCode(char colorCode) {

... include code here to check that correct codes used ...

this.colorCode = colorCode;

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Sometimes a superclass makes sense as an object, and sometimes it does not. Duke's Choice
carries shirts, socks, and trousers, but it does not have an individual item called a “clothing.” Also,
in the application, the superclass Clothing may declare some methods that may be required in
each subclass (and thus can be in the superclass), but cannot really be implemented in the
superclass.

Java SE7 Fundamentals 12 - 16

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Abstract Classes

Shirt

getFit()

Trousers

getFit()

getGender()
Socks

Clothing

getId()

display()

getPrice()

getSize()

getColor()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Abstraction refers to creating classes that are general and may contain methods without particular
implementation or method body code.

An example of an abstract class is the Clothing class as coded in this slide and the following
slides. Clothing is an abstract concept that can refer to anything. (You usually do not go to a store
and say, “I want to buy a clothing item.”)

However, all clothing items have some similar characteristics in the context of an order entry
system, such as an ID or a method to display information about the item. Classes that are generic
and cannot be fully defined, such as an Item class, are referred to as abstract classes. Classes
that extend an abstract class must implement the empty methods of the abstract class with code
specific to the subclass. You should spend time on your analysis and design to make sure that
your solution has enough abstraction to ensure flexibility.

Java SE7 Fundamentals 12 - 17

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Abstract Clothing Superclass: 1

public abstract class Clothing {

// Fields

private int itemID = 0; // Default ID for all clothing items

private String description = "-description required-"; // default

private char colorCode = 'U'; //'U' is Unset

private double price = 0.0; // Default price for all items

// Constructor

public Clothing(int itemID, String description, char colorCode,

double price, int quantityInStock) {

this.itemID = itemID;

this.description = description;

this.colorCode = colorCode;

this.price = price;

}

The abstract
keyword ensures

that the class cannot
be instantiated.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The get and set methods for the colorCode field are abstract to ensure that they are
implemented appropriately in each subclass.

Note that the Shirt subclass shown previously will compile correctly as a subclass of this
abstract class because it already has implementations of these two methods. But if the
implementations of getColorCode() and setColorCode() are removed from the Shirt
subclass, the compile will fail because abstract methods in the superclass must be implemented in
the subclass.

Java SE7 Fundamentals 12 - 18

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Abstract Clothing Superclass: 2

public abstract char getColorCode() ;

public abstract void setColorCode(char colorCode);

... other methods not listed ...

}

The abstract
keyword ensures
that the must be
overridden in the

subclass

The abstract
keyword ensures

that these must be
overridden in the

subclass.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In the examples in this course, shirts, trousers, hats, and socks are all types of clothing. So
Clothing is a good name for the superclass to these subclasses (types) of clothing.

Java SE7 Fundamentals 12 - 19

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Superclass and Subclass Relationships

It is very important to consider the best use of inheritance:

• Use inheritance only when it is completely valid or
unavoidable.

• Check appropriateness with the “is a” phrase:
– The phrase “a Shirt is a piece of Clothing” expresses a valid

inheritance link.

– The phrase “a Hat is a Sock” expresses an invalid
inheritance link.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The slide shows an example of another set of superclasses and subclasses. In this case, there
are more than two levels. The base superclass is Employee, and Employee currently has two
subclasses. One of the big advantages of inheritance is that it is easy at any future time to create
a new class that extends Employee, and that class inherits all the functionality that Employee has.

One of the Employee subclasses is SkilledEmployee, and the diagram shows that it has three
subclasses of its own: Editor, GraphicIllustrator, and TechnicalWriter.

None of these classes are abstract. There is such a thing as an employee and some processes in
an application using these classes may work with the Employee class.

Java SE7 Fundamentals 12 - 20

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Another Inheritance Example

Employee

getName()

getEmpId()

TechnicalWriterGraphicIllustrator

getToolsUsed()

????

Editor

getEditType()

Manager

getEmployees()

????

SkilledEmployee

getSkills()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 21

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Overview of inheritance

• Working with superclasses and subclasses

• Polymorphism and overriding methods

• Interfaces

• The Object class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

A very important feature of Java is this ability to use not only the class itself but any superclass of
the class as its reference type. In the example shown in the slide, notice that you can refer to both
a Shirt object and a Trousers object with a Clothing reference. This means that a reference to a
Shirt or Trousers object can be passed into a method that requires a Clothing reference. Or a
Clothing array can contain references to Shirt, Trousers, or Socks objects.

Java SE7 Fundamentals 12 - 22

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Superclass Reference Types

So far you have seen the class used as the reference type for
the created object:

• To use the Shirt class as the reference type for the Shirt
object:
Shirt myShirt = new Shirt();

• But you can also use the superclass as the reference:
Clothing clothingItem1 = new Shirt();
Clothing clothingItem2 = new Trousers();

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Accessing the methods of a class using a superclass reference is a little like accessing the
controls of an electronic device using a remote control instead of the controls on the device itself.
Often a device such as a video camera has a comprehensive set of controls for recording, playing,
editing, and otherwise accessing every available function of the camera. This is a lot like using the
class of the object as the reference type.

For some combinations of video camera and remote, the remote may give you exactly the same
controls, and this can also be the case when using a superclass as reference for an object (the
superclass gives you access to all the methods of the object; the object's class does not add any
new methods). But it is often the case that the remote control does not have the full set of controls
available on the camera itself. Again, this is common when using the superclass as reference.
The superclass has access only to the methods of the object that are declared on the superclass
even if the object has a number of other methods.

Java SE7 Fundamentals 12 - 23

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Access to Object Functionality

Full set of
controls
available

Subset of
controls
available

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Using a reference type Clothing does not allow access to the getFit() or getGender()
method of the Trouser object. Usually, this is not a problem because you are most likely to be
passing Clothing references to methods that do not require access to these methods. For
example, a purchase() method could receive a Clothing argument because it needs access
only to the getPrice() method.

Java SE7 Fundamentals 12 - 24

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Accessing Class Methods from Superclass

Trousers

getFit()

getGender()

Clothing

getId()

display()

getPrice()

getSize()

getColor()

getId()

display()

getPrice()

getSize()

getColor()

Methods inherited
from superclass

Methods unique to the
Trousers class

Superclass
Reference Object

Only these
methods may
be called

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Given that a superclass may not have access to all the methods of the object it is referring to, how
can you access those methods? The answer is that you can do so by replacing the superclass
reference by:

• A reference that is the same type as the object

• An interface that declares the methods in question and is implemented by the class of the
object

(Interfaces are covered in the next topic of this lesson.)

Java SE7 Fundamentals 12 - 25

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Casting the Reference Type

Trousers

getFit()

getGender()

Clothing

getId()

display()

getPrice()

getSize()

getColor()

getId()

display()

getPrice()

getSize()

getColor()

Methods inherited
from superclass

Methods unique to
the Trousers class

Superclass
Reference

Object

Trousers

getFit()

getGender()

getId()

display()

getPrice()

getSize()

getColor()

Class
Reference

Casting changes
the reference type.

Cast
operation

All methods are
now accessible.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code in this example shows a Clothing reference being cast to a Trousers reference to
access the getFit() method, which is not accessible via the Clothing reference. Note that the
inner parentheses around Trousers are part of the cast syntax, and the outer parentheses
around (Trousers)cl are there to apply the cast to the Clothing type.

Java SE7 Fundamentals 12 - 26

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Casting

Clothing cl = new Trousers(123, "Dress Trousers", 'B', 17.00, 4, 'S');

cl.display();

//char fitCode = cl.getFit(); // This won't compile

char fitCode = ((Trousers)cl).getFit(); // This will compile

The parentheses
around cl ensure

that the cast
applies to this

reference.

The syntax for casting is
the type to cast to in

parentheses placed before
the reference to be cast.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The first code example in the slide shows a method that is designed to receive an argument of
type Clothing, and then cast it to Trousers to invoke a method that exists only on a Trousers
object. But it is not possible to know what object type the reference cl points to. And if it is, say, a
Shirt, the attempt to cast it will cause a problem. (It will throw a CastClassException.
Throwing exceptions is covered in the lesson titled “Handling Errors.”)

You can code around this potential problem with the code shown in the second code example in
the slide. Here the instanceof operator is used to ensure that cl is referencing an object of
type Trousers before the cast is attempted.

If you think your code requires casting, be aware that there are often ways to design code so that
casting is not necessary, and this is usually preferable. But if you do need to cast, you should use
instanceof to ensure that the cast does not throw a CastClassException.

Java SE7 Fundamentals 12 - 27

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

instanceof Operator

public static void displayDetails(Clothing cl) {

cl.display();

char fitCode = ((Trousers) cl).getFitCode();

System.out.println("Fit: " + fitCode);

}

public static void displayDetails(Clothing cl) {

cl.display();

if (cl instanceof Trousers) {

char fitCode = ((Trousers) cl).getFitCode();

System.out.println("Fit: " + fitCode);

}

else { // Take some other action }

The instanceof
operator returns true

if the object
referenced by cl is a

Trousers object.

Possible casting error:

instanceof operator used to ensure there is no casting error:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 28

Polymorphic behavior displayed by a statement may invoke one of the methods of Clothing. This
is a polymorphic method call because the invocation does not know or need to know the type of
the object (sometimes called the runtime type), but the correct method―that is, the method of the
actual object―will be invoked. In the example in the slide, the object is Trousers, but it could be
any subclass of Clothing.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Polymorphic Method Calls

Trousers

getFit()

getGender()

Clothing

getId()

display()

getPrice()

getSize()

getColor() getId()

getPrice()

getSize()

display()

getColor()

Methods inherited
from superclass

Methods unique to the
Trousers class

Superclass
Reference

Object

Trousers

getFit()

getGender()

getId()

display()

getPrice()

getSize()

getColor()

Class
Reference

Regardless of the reference
type used, the method

executed is on the
instantiated object.

Methods inherited
from superclass and
overridden

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 29

Answer: b

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

How can you change the reference type of an object?
a. By calling getReference()

b. By casting

c. By declaring a new reference and assigning the object

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 30

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Overview of inheritance

• Working with superclasses and subclasses

• Polymorphism and overriding methods

• Interfaces

• The Object class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

A more complex set of classes may have items in two different hierarchies. If Duke's Choice starts
selling outdoors gear, it may have a completely different superclass called Outdoors, with its own
set of subclasses (for example, getWeight() as an Outdoors method).

In this scenario, there may be some classes from each hierarchy that have something in common.
For example, the custom shirt item in Clothing is not returnable (because it is made by hand for a
particular person), and neither is the Stove fuel item in the Outdoors hierarchy. All other items are
returnable.

How can this be modeled? Here are some things to consider:

• A new superclass will not work because a class can extend only one superclass, and all
items are currently extending either Outdoors or Clothing.

• A new field named returnable, added to every class, could be used to determine if an item
can be returned. This is certainly possible, but then there is no single reference type to pass
to a method that initiates or processes a return.

• You can use a special type called an Interface that can be implemented by any class. This
Interface type can then be used to pass a reference of any class that implements it.

Java SE7 Fundamentals 12 - 31

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Multiple Hierarchies

Shirt

getFit()

Trousers

getFit()

getGender()

Custom Shirt

Tent

getType()

Camp Stove Stove fuel

Clothing

getId()

display()

getPrice()

getSize()

getColor()

Outdoors

getId()

display()

getPrice()

getWeight()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The diagram in the slide shows all returnable items implementing the Returnable interface with its
single method, doReturn(). Methods can be declared in an interface, but they cannot be
implemented in an interface. Therefore, each class that implements Returnable must implement
doReturn() for itself. All returnable items could be passed to a processReturns() method
of a Returns class, and then have their doReturn() method called.

Java SE7 Fundamentals 12 - 32

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Interfaces

Shirt

doReturn()

getFit()

Trousers

doReturn()

getFit()

getGender()

Custom Shirt

Tent

doReturn()

getType()

Camp Stove

doReturn()

Stove fuel
Returnable

doReturn()

Clothing

getId()

display()

getPrice()

getSize()

getColor()

Outdoors

getId()

display()

getPrice()

getWeight()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code in this example shows the Returnable interface and the Shirt class. Only the
constructor and the doReturn() method are shown.

In this implementation, Returnable provides a marker to indicate that the item can be returned,
and ensures that the developer of Shirt must implement the doReturn() method.

The doReturn() method returns a String describing the conditions for returning the item.

Java SE7 Fundamentals 12 - 33

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Implementing the Returnable Interface

public interface Returnable {

public String doReturn();

}

Like an abstract
method, has only
the method stub

public class Shirt extends Clothing implements Returnable {

public Shirt(int itemID, String description, char colorCode,
double price, char fit) {

super(itemID, description, colorCode, price);

this.fit = fit;

}

public String doReturn() {

// See notes below

return "Suit returns must be within 3 days";

}

...< other methods not shown > ... } // end of class

Shirt class

Returnable Interface

Ensures Shirt
must implement
all methods of

Returnable

Method
declared in

the
Returnable
interface

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

As shown in a previous slide, the reference used to access an object determines the methods that
can be called on it. So in the case of the Interface reference shown in the slide, only the
getReturn() method can be called. If a method receives a Returnable reference, however, and
needs access to methods on Clothing or methods on Trousers, the reference can be cast to the
appropriate reference type.

Java SE7 Fundamentals 12 - 34

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Access to Object Methods from Interface

Trousers

getFit()

getGender()

doReturn()

Clothing

getId()

display()

getPrice()

getSize()

getColor()

getId()

display()

getPrice()

getSize()

getColor()

Methods inherited
from superclass

Methods unique to the
Trousers class

Superclass
Reference Object

Only these
methods can
be called on
this reference

Returnable

doReturn()
Method from Interface
implemented

Only this method
can
be called on
this reference

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Some of the best examples of inheritance and the utility of Interface and Abstract types can be
found in the Java API. For example, the ArrayList class extends the AbstractList class,
which itself extends AbstractCollection. AbstractCollection implements the List
interface, which means that ArrayList also implements the List interface.

To use the ArrayList as a List, use the List interface as the reference type.

Java SE7 Fundamentals 12 - 35

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

ArrayList is extended
from AbstractList,

which is in turn extended
from

AbstractCollection.
ArrayList

implements a
number of
interfaces.

The List interface is
principally what is

used when working
with ArrayList.

ArrayList

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The List interface is implemented by many classes. This means that any method that requires a
List may actually be passed a List reference to any objects of these types (but not the abstract
classes, because they cannot be instantiated).

Java SE7 Fundamentals 12 - 36

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

List Interface

Many classes
implementing

the List
interface

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 37

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Overview of inheritance

• Working with superclasses and subclasses

• Polymorphism and overriding methods

• Interfaces

• The Object class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

All classes have at the very top of their hierarchy the Object class. It is so central to how Java
works that all classes that do not explicitly extend another class automatically extend Object.
So all classes have Object at the root of their hierarchy. This means that all classes have access
to the methods of Object. Being the root of the object hierarchy, Object does not have many
methods―only very basic ones that all objects must have.

An interesting method is the toString() method. The Object toString() method gives very
basic information about the object; generally classes will override the toString() method to
provide more useful output. System.out.println() uses the toString() method on an
object passed to it to output a string representation.

Java SE7 Fundamentals 12 - 38

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

The Object class
is the base class.

Object Class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

All objects have a toString() method because it exists in the Object class. But the
toString() method may return different results depending on whether or not that method has
been overridden. In the example in the slide, toString() is called (via the println() method
of System.out) on four objects:

• An Object object: This calls the toString() method of the base class. It returns the name
of the class (java.lang.Object), an @ symbol, and a hash value of the object (a unique
number associated with the object.

• A StringBuilder object: This calls the toString() method on the StringBuilder object.
StringBuilder overrides the toString() method that it inherits from Object to return a String
object of the set of characters it is representing.

• An object of type First, a test class: First is a class with no code, so the toString()
method called is the one that is inherited from the Object class.

• An object of type Second, a test class: Second is a class with one method named
toString(), so this overridden method will be the one that is called.

There is a case for reimplementing the getDescription() method used by the Clothing
classes to instead use an overridden toString() method.

Java SE7 Fundamentals 12 - 39

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Calling the toString() Method

Object's
toString()

is used.

StringBuilder
overrides Object's

toString().
First inherits

Object‘s

toString().

Second overrides
Object‘s

toString().

The output for the calls to
the toString() method

of each object

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 40

Answer: c

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

Which methods of an object can be accessed via an interface
that it implements?

a. All the methods implemented in the object's class

b. All the methods implemented in the object's superclass

c. The methods declared in the interface

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 41

Inheritance enables programmers to put common members (variables and methods) in one class
and have other classes inherit these common members from this new class.

The class containing members common to several other classes is called the superclass or the
parent class. The classes that inherit from, or extend, the superclass are called subclasses or
child classes.

Inheritance also allows object methods and fields to be referred to by a reference that is the type
of the object, the type of any of its superclasses, or an interface that it implements.

Finally, inheritance enables polymorphism.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned the following:

• Creating class hierarchies with subclasses and
superclasses helps to create extensible and maintainable
code by:
– Generalizing and abstracting code that may otherwise be

duplicated

– Using polymorphism

• Creating interfaces:
– Allows you to link classes in different object hierarchies by

their common behavior

– Use an Interface reference type in your
code so that the implementing class can
be changed more easily.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 42

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 12-1 Overview:
Creating and Using Superclasses and Subclasses
In this practice, you design and then create a class hierarchy
that will form the basis for an Employee Tracking System of the
Marketing department in the Duke’s Choice company.

During the practice, you:

• Create a simple design model for the class hierarchy

• Create the actual classes and test them

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE7 Fundamentals 12 - 43

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 12-2 Overview:
Using a Java Interface

In this practice, you create an interface. During the practice,
you:

• Create an interface called Printable and implement it within
the class hierarchy that you built in Practice 11-1

• Examine and run another small application that uses the
same Printable interface

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Handling Errors

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 13 - 2

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

• Describe the different kinds of errors that can occur and
how they are handled in Java

• Describe what exceptions are used for in Java

• Determine what exceptions are thrown, for any foundation
class

• Write code to handle an exception thrown by the method of
a foundation class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 13 - 3

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Handling errors: an overview

• Propagation of exceptions

• Catching and throwing exceptions

• Multiple exceptions and errors

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

You may have come across the error shown in the slide while working on some of the previous
practice activities. The code shows a common mistake made when accessing an array.
Remember that arrays are zero based (the first element is accessed by a zero index), so in an
array like the one in the slide that has five elements, the last element is actually intArray[4].

intArray[5] tries to access an element that does not exist, and Java responds to this programming
mistake by printing the text shown in the console.

Java SE 7 Fundamentals 13 - 4

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Reporting Exceptions

Coding mistake:

int[] intArray = new int[5];
intArray[5] = 27;

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 5

at TestErrors.main(TestErrors.java:17)

Output in console:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Here is a very similar example, except this time the code that creates the array and tries to assign
a value to a nonexistent element has been moved to a different class. Notice how the error
message in the console is almost identical to the previous example, but this time the methods
main() in TestException and addElement() in TestArray are listed.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 5

at TestArray.addElement(TestArray.java:19)

at TestException.main(TestException.java:20)

Java Result: 1

In this lesson, you learn why that message is printed to the console. You also learn how you can
catch or trap the message so that it is not printed to the console, and what other kinds of errors are
reported by Java.

Java SE 7 Fundamentals 13 - 5

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Reporting Exceptions

Calling code in main():

TestArray myTestArray = new TestArray(5);
myTestArray.addElement(5, 23);

public class TestArray {
int[] intArray;
public TestArray (int size) {

intArray = new int[size];
}
public void addElement(int index, int value) {
intArray[index] = value;

}
}

TestArray class:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 13 - 6

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

How Exceptions Are Thrown

Normal program execution:

1. Caller method calls worker method.

2. Worker method does work.

3. Worker method completes work, and then execution
returns to caller method.

When an exception occurs, this sequence changes:

• Exception is thrown and either:
– A special Exception object is passed to a special method-like

catch block in the current method

or
– Execution returns to the caller method

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

As mentioned in the previous slide, when an exception is thrown, that exception is an object that
can be passed to a catch block. There are three main types of objects that can be thrown in this
way, and all are derived from the class Throwable.

Java SE 7 Fundamentals 13 - 7

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Types of Exceptions

Three main types of Throwable:

• Error
– Typically unrecoverable external error

– Unchecked

• RuntimeException
– Typically programming mistake

– Unchecked

• Exception
– Recoverable error

– Checked (must be caught or thrown)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

OutOfMemoryError is an error. Throwables of type Error are typically used for exceptional
conditions that are external to the application and that the application usually cannot anticipate or
recover from.

The example shown here has an infinite loop that continually adds an element to an ArrayList,
guaranteeing that the JVM will run out of memory. The error is thrown up the call stack, and
because it is not caught anywhere, it is displayed in the console as follows:

List now has 240 million elements!

List now has 250 million elements!

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

at java.util.Arrays.copyOf(Arrays.java:2760)

at java.util.Arrays.copyOf(Arrays.java:2734)

at java.util.ArrayList.ensureCapacity(ArrayList.java:167)

at java.util.ArrayList.add(ArrayList.java:351)

at TestErrors.main(TestErrors.java:22)

Java SE 7 Fundamentals 13 - 8

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

OutOfMemoryError

Programming mistake:

ArrayList theList = new ArrayList();
while(true) {

String theString = "A test String";
theList.add(theString);
if (theList.size()% 1000000 == 0) {

System.out.println("List now has " +
theList.size()/100000 + " million elements!");

}
}

List now has 240 million elements!
List now has 250 million elements!
Exception in thread "main" java.lang.OutOfMemoryError: Java

heap space

Output in console:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 13 - 9

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Handling errors: an overview

• Propagation of exceptions

• Catching and throwing exceptions

• Multiple exceptions and errors

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

To understand exceptions, you need to think about how methods call other methods and how this
can be nested deeply. The normal mode of operation is that a caller method calls a worker
method, which in turn becomes a caller method and calls another worker method, and so on. This
sequence of methods is called the call stack.

The example shown in the slide illustrates three methods in this relationship. The main method in
the class Test (a static method) instantiates an object of type Utils and calls the method
doThis() on that object. The doThis() method in turn calls a private method doThat() on the
same object. When it comes to the end of its code or a return statement, each method returns
execution to the method that called it.

Note that as far as how methods call and return and as far as how exceptions are thrown, the fact
that there is one class method here and two instance methods on the same object is immaterial.

Java SE 7 Fundamentals 13 - 10

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Method Stack

main()

doThis()

doThat()

The main()
method calls

doThis() on a
Utils object.

class Test

class Utils

The doThis()
method calls the
doThat() method
on the same object.

doThat() returns and
execution continues in

doThis().

doThis() returns and
execution continues in

main().

main() completes
execution and exits.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code shown in this slide is possible code for the example illustrated in the previous slide.

Java SE 7 Fundamentals 13 - 11

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Call Stack: Example

Test class:

Utils class:
public void doThis() {

...< code to do something >...
doThat();

return;

public void doThat() throws Exception{
...< code to do something >...
if (some_problem) throw new Exception();

return;

public static void main (String args[]) {
Utils theUtils = new Utils();
theUtils.doThis();

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

When a method finishes executing, the normal flow (on completion of the method or on a return
statement) goes back to the calling method and continues execution at the next line of the calling
method.

When an exception is thrown, program flow returns to the calling method, but not to the point just
after the method call. Instead, if there is a try/catch block, it is thrown back to the catch block that
is associated with the try block that contains the method call. If there is no try/catch block in the
calling method, the exception is thrown back to its calling method.

In the case of a checked exception, this happens because the programmer is forced to explicitly
throw the exception if the programmer chose not to catch it. In the case of an exception that is a
RuntimeException or an error, the throwing of the exception happens automatically where no
try/catch exists.

Java SE 7 Fundamentals 13 - 12

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Throwing Throwables

main()

doThis()

doThat()

class Test

class Utils
Exception thrown in doThat()

doThis() must catch
OR throw the exception.

Execution returns to
doThis(), but not via the
normal return mechanism.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The diagram in the slide illustrates an exception originally thrown in doThat() being thrown to
doThis(). The error is not caught there, so it is thrown to its caller method, which is the main
method.

Java SE 7 Fundamentals 13 - 13

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Throwing Throwables

main()

doThis()

doThat()

class Test

class Utils
Exception thrown in doThat()

If doThis() throws the exception
(does NOT catch it), then …

… main() must catch it OR throw it.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Here you can see the code for the Utils class shown in NetBeans. In the first screenshot, no
exceptions are thrown, so NetBeans shows no syntax or compilation errors. In the second
screenshot, doThat() throws an exception, and NetBeans flags this as something that needs to
be dealt with by the programmer. As you can see from the tooltip, it gives the two options that a
programmer must choose from if handling checked exceptions.

In these early examples, for simplicity we use the Exception superclass. However, as you will see
later, you should not throw so general an exception. Where possible, when you catch an
exception, you should try to catch a specific exception.

Java SE 7 Fundamentals 13 - 14

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Working with Exceptions in NetBeans

Throwing an exception
within the method

requires further steps.

NetBeans uses a tooltip to
give you your two options.

No exceptions thrown;
nothing needs be done

to deal with them.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Here you can see that the exception thrown in doThat()has been handled by:

• Adding throws Exception to the doThat() method signature, ensuring that it is thrown to
the caller, doThat()

• Adding a try/catch block to doThis() so that:

- The try block contains the call to doThat()

- The catch block is set up with the parameter Exception

Java SE 7 Fundamentals 13 - 15

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Catching an Exception

Now exception needs to
be dealt with in
doThis().

The try/catch block
catches exception and

handles it.

doThat() now
throws an
exception.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

But what happens if none of the methods in the call stack have try/catch blocks? That situation is
illustrated by the diagram shown in this slide. Because there are no try/catch blocks, the exception
is thrown all the way up the call stack. But what does it mean to throw an exception from the
main() method? This causes the program to exit, and the exception, plus a stack trace for the
exception, is printed to the console.

Java SE 7 Fundamentals 13 - 16

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Uncaught Exception

main()

doThis()

doThat()

class Test

class Utils Exception thrown in doThat()

Thrown again in
doThis()

Thrown again in main()

StackTrace printed to the console

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In the example, you can see what happens when the exception is thrown up the call stack all the
way to the main() method, and it throws the exception too.

Did you notice how similar this looks to the first example you saw of an
ArrayIndexOutOfBoundsException? In both cases, the exception is displayed as a stack trace to
the console.

However, there was something different about the ArrayIndexOutOfBoundsException: None of the
methods threw that exception! So how did it get passed up the call stack?

The answer is that ArrayIndexOutOfBoundsException is a RuntimeException. The
RuntimeException class is a subclass of the Exception class. It has the additional functionality that
its exceptions are automatically thrown up the call stack without this being explicitly declared in the
method signature.

Java SE 7 Fundamentals 13 - 17

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Exception Printed to Console

Example of main() throwing exception

main() is now set up to
throw exception.

Because main()
throws the exception, it
now prints call stack to

console.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Exceptions that are not also RuntimeExceptions must be explicitly handled. The examples later in
this lesson show you how to work with an IOException.

Java SE 7 Fundamentals 13 - 18

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Summary of Exception Types

A Throwable is a special type of Java object:

• Only object type that is used as the argument in a catch
clause

• Only object type that can be “thrown” to the calling method

• Has two subclasses:
– Error

— Automatically thrown to the calling method if created

– Exception
— Must be explicitly thrown to the calling method

OR

— Caught using a try/catch block

— Has a subclass RuntimeException that is automatically thrown
to the calling method

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: d

Java SE 7 Fundamentals 13 - 19

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

Which one of the following statements is true?

a. A RuntimeException must be caught.

b. A RuntimeException must be thrown.

c. A RuntimeException must be caught or thrown.

d. A RuntimeException is thrown automatically.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c

Java SE 7 Fundamentals 13 - 20

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Quiz

Which of the following objects are checked exceptions?

a. All objects of type Throwable

b. All objects of type Exception

c. All objects of type Exception that are not of type
RuntimeException

d. All objects of type Error

e. All objects of type RuntimeException

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 13 - 21

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Handling errors: an overview

• Propagation of exceptions

• Catching and throwing exceptions

• Multiple exceptions and errors

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

When working with any API, it is necessary to determine what exceptions are thrown by the
object's constructors or methods. The example in the slide is for the File class. File has a
createNewFile()method that can throw an IOException or a SecurityException.
SecurityException is a RuntimeException, so SecurityException is unchecked but IOException is a
checked exception.

Java SE 7 Fundamentals 13 - 22

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Exceptions in the Java API Documentation

Click to get the detail
of

createNewFile().
Note exceptions

that can be
thrown.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The two screenshots in the slide show a simple testCheckedException() method. In the first
example, the File object is created using the constructor. Note that even though the constructor
can throw a NullPointerException (if the constructor argument is null), you are not forced to catch
this exception.

However, in the second example, createNewFile() can throw an IOException, and NetBeans
shows that you must deal with this.

Note that File is introduced here only to illustrate an IOException. In the next course
(Programming 2), you learn about the File class and a new set of classes in the package nio,
which provides more sophisticated ways to work with files.

Java SE 7 Fundamentals 13 - 23

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Calling a Method That Throws an Exception

createNewFile() can
throw a checked exception,
so it must throw or catch.

Constructor causes no
compilation problems.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example in the slide is handling the possible raised exception by:

• Throwing the exception from the testCheckedException() method

• Catching the exception in the caller method

In this example, the catch method catches the exception because the path to the text file is not
correctly formatted. System.out.println(e) calls the toString() method of the exception,
and the result is as follows:

java.io.IOException: The filename, directory name, or volume label
syntax is incorrect

Java SE 7 Fundamentals 13 - 24

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Working with a Checked Exception

Catching IOException:

public static void main(String args[]) {
try {

testCheckedException();
}
catch (IOException e) {

System.out.println(e);
}

}

public static void testCheckedException() throws IOException{
File testFile = new File("//testFile.txt");
testFile.createNewFile();
System.out.println("File exists: " + testFile.exists());

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 13 - 25

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Best Practices

• Catch the actual exception thrown, not the exception or
Throwable superclass.

• Examine the exception to find out the exact problem so
you can recover cleanly.

• You do not need to catch every exception.
– A programming mistake should not be handled. It must be

fixed.

– Ask yourself, "Does this exception represent behavior I want
the program to recover from?"

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code in the slide illustrates two poor programming practices.

1. The catch clause catches an exception rather than the expected exception from calling the
createFile method (IOException).

2. The catch clause does not analyze the Exception object and instead simply assumes that
the expected exception has been thrown from the File object.

A major drawback of this careless programming style is shown by the fact that the code prints the
following message to the console:

There is a problem creating the file!

This suggests that the file has not been created, and indeed any further code in the catch block
will run. But what is actually happening in the code?

Java SE 7 Fundamentals 13 - 26

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Bad Practices

public static void main (String args[]) {
try {

createFile("c:/testFile.txt");
}
catch (Exception e) {

System.out.println("Problem creating the file!");
...< other actions >...

}
}

public static void createFile(String fileName) throws
IOException {

File f = new File(fileName);
f.createNewFile();

int[] intArray = new int[5];
intArray[5] = 27;

}

Catching
superclass?

No processing of the Exception object?

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Putting in a few System.out.println() calls in the createFile method may help clarify
what is happening. The output now is:

C:/testFile.txt exists? false

C:/testFile.txt exists? true

java.lang.ArrayIndexOutOfBoundsException: 5

So the file is being created! And you can see that the exception is actually an
ArrayIndexOutOfBoundsException that is being thrown by the final line of code in
createFile().

In this example, it is obvious that the array assignment can throw an exception, but it may not be
so obvious. In this case, the createNewFile() method of File actually throws another
exception―a SecurityException. Because it is an unchecked exception, it is thrown automatically.

If you check for the specific exception in the catch clause, you remove the danger of assuming
what the problem is.

Java SE 7 Fundamentals 13 - 27

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Bad Practices

public static void main (String args[]) {
try {

createFile("c:/testFile.txt");
}
catch (Exception e) {

System.out.println(e);
...< other actions >...

}
}

public static void createFile(String fileName) throws
IOException {

File f = new File(fileName);
System.out.println(fileName + " exists? " + f.exists());
f.createNewFile();
System.out.println(fileName + " exists? " + f.exists());
int[] intArray = new int[5];
intArray[5] = 27;

}

What is the
object type?

toString()
is called on
this object.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 13 - 28

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Handling errors: an overview

• Propagation of exceptions

• Catching and throwing exceptions

• Multiple exceptions and errors

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example in the slide shows a method that could potentially throw three different exceptions.
It uses the createTempFile() File method, which creates a temporary file. (It ensures that each
call creates a new and different file and also can be set up so that the temporary files created are
deleted on exit.)

The three different exceptions are the following:

IOException

c:\notWriteableDir is a directory, but it is not writeable. This causes createTempFile() to
throw an IOException (checked).

IllegalArgumentException

The first argument passed to createTempFile should be three or more characters long. If it is not,
the method throws an IllegalArgumentException (unchecked).

ArrayIndexOutOfBoundsException

As in previous examples, trying to access a nonexistent index of an array throws an
ArrayIndexOutOfBoundsException (unchecked).

Java SE 7 Fundamentals 13 - 29

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Multiple Exceptions

public static void createFile() throws IOException {

File testF = new File("c:/notWriteableDir");

File tempF = testFile.createTempFile("te", null, testF);

System.out.println("Temp filename: " + tempFile.getPath());

int myInt[] = new int[5];
myInt[5] = 25;

}

Directory must
be writeable

(IOException).

Array index must be valid
(ArrayIndexOutOfBounds).

Argument must be three or
more characters

(IllegalArgumentException).

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example in the slide shows the minimum exception handling (the compiler insists on at least
the IOException being handled).

With the directory set as shown at c:/notWriteableDir, the output of this code is:

java.io.IOException: Permission denied

However, if the file is set as c:/writeableDir (a writeable directory), the output is now:

Exception in thread "main" java.lang.IllegalArgumentException: Prefix
string too short

at java.io.File.createTempFile(File.java:1782)

at
MultipleExceptionExample.createFile(MultipleExceptionExample.java:34)

at MultipleExceptionExample.main(MultipleExceptionExample.java:18)

The argument "te" causes an IllegalArgumentException to be thrown, and because it is a
RuntimeException, it gets thrown all the way out to the console.

Java SE 7 Fundamentals 13 - 30

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Catching IOException

public static void main (String args[]) {
try {

createFile();
}
catch (IOException ioe) {

System.out.println(ioe);
}

}

public static void createFile() throws IOException {

File testF = new File("c:/notWriteableDir");
File tempF = testFile.createTempFile("te", null, testF);
System.out.println("Temp filename is " + tempFile.getPath());
int myInt[] = new int[5];
myInt[5] = 25;

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example in the slide shows an additional catch clause added to catch the potential
IllegalArgumentException.

With the first argument of the createTempFile() method set to "te" (fewer than three
characters), the output of this code is:

java.lang.IllegalArgumentException: Prefix string too short

However, if the argument is set to "temp", the output is now:

Temp filename is /Users/kenny/writeableDir/temp938006797831220170.tmp

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:

... < some code omitted > ...

Now the temporary file is being created, but there is still another argument being thrown by the
createFile() method. And because ArrayIndexOutOfBoundsException is a RuntimeException,
it is automatically thrown all the way out to the console.

Java SE 7 Fundamentals 13 - 31

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Catching IllegalArgumentException

public static void main (String args[]) {
try {

createFile();
}
catch (IOException ioe) {

System.out.println(ioe);
} catch (IllegalArgumentException iae) {

System.out.println(iae);
}

}

public static void createFile() throws IOException {

File testF = new File("c:/writeableDir");
File tempF = testFile.createTempFile("te", null, testF);
System.out.println("Temp filename is " + tempFile.getPath());
int myInt[] = new int[5];
myInt[5] = 25;

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example in the slide shows an additional catch clause to catch all the remaining exceptions.

For the example code, the output of this code is:

Temp filename is /Users/kenny/writeableDir/temp7999507294858924682.tmp

java.lang.ArrayIndexOutOfBoundsException: 5

Finally, the catch exception clause can be added to catch any additional exceptions.

Java SE 7 Fundamentals 13 - 32

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Catching Remaining Exceptions

public static void main (String args[]) {
try {

createFile();
}
catch (IOException ioe) {

System.out.println(ioe);
} catch (IllegalArgumentException iae) {

System.out.println(iae);
} catch (Exception e) {

System.out.println(e);
}

}
public static void createFile() throws IOException {
File testF = new File("c:/writeableDir");
File tempF = testFile.createTempFile("te", null, testF);
System.out.println("Temp filename is " + tempFile.getPath());
int myInt[] = new int[5];
myInt[5] = 25;

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 13 - 33

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Describe the different kinds of errors that can occur and
how they are handled in Java

• Describe what exceptions are used for in Java

• Determine what exceptions are thrown, for any foundation
class

• Write code to handle an exception thrown by the method of
a foundation class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 13 - 34

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 13-1 Overview:
Using a Try/Catch Block to Handle an Exception

In this practice, you handle an exception thrown by the
parse() method of SimpleDateFormat. During the practice,
you:

• Use the Java API documentation to examine the
SimpleDateFormat class and find the exception thrown
by its parse() method

• Create a class that calls the parse() method

• Write a try/catch block to catch the exception thrown
by parse()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 13 - 35

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Practice 13-2 Overview:
Catching and Throwing a Custom Exception

In this practice, you use a custom exception named
InvalidSkillException. You use this with the Employee
Tracking application that you designed and built in Practices
12-1 and 12-2.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Deploying and Maintaining the
Duke's Choice Application

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 2

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Deploy a simple application as a JAR file

• Describe the parts of a Java application, including the user
interface and the back end

• Describe how classes can be extended to implement new
capabilities in the application

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 3

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Packages

• JARs and deployment

• Two-tier and three-tier architecture

• The Duke's Choice application

• Application modifications and enhancements

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Classes are grouped into packages to ease management of the system.

There are many ways to group classes into meaningful packages. There is no right or wrong way,
but a common technique is to group classes into a package by semantic similarity.

For example, the software for Duke's Choice could contain a set of item classes (such as Shirt,
Trousers, Tent, the superclasses Clothing and Camping, and so on), a set of classes that
use these item classes to arrange purchases, and a set of utility classes. All these packages are
contained in the top-level package called duke.

Java SE 7 Fundamentals 14 - 4

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Packages

duke

duke.purchase duke.util

ConvertSize.class

Classes

PackagesPackages

Customer.class

Order.class

Shipping.class

Clothing.class

Shirt.class

Trousers.class

Tent.class

CampStove.class

Returnable.class

duke.item

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Packages are stored in a directory tree containing directories that match the package names. For
example, the Clothing.class file should exist in the directory item, which is contained in the
directory duke.

Java SE 7 Fundamentals 14 - 5

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Packages Directory Structure

duke/

item/

purchase/

ConvertSize.class

Clothing.class

Shirt.class

Trousers.class

Tent.class

CampStove.class

Returnable.class

Customer.class

Order.class

Shipping.class

util/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 6

The left panel in NetBeans has three tabs. Two of these tabs, Projects and Files, show how
packages relate to the file structure.

The Projects tab shows the packages and libraries for each project (the screenshot shows only
DukesChoice). The source package shown is the one containing the packages and classes for
Duke's Choice, and the screenshot shows the four packages duke.init, duke.item,
duke.purchase, and duke.util. Each of these packages can be expanded to show the
source files within, as has been done for the duke.item package in the screenshot.

The Files tab shows the directory structure for each project. In the screenshot, you can see how
the packages listed on the Projects tab have a corresponding directory structure. For example, the
duke.item package has the corresponding file structure of the duke directory just under the src
directory and contains the item directory, which in turn contains all the source files in the
package.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Packages in NetBeans

Projects tab

Packages
shown as

icons

Files tab

File
structure for
packages

shown

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The example code in the slide shows the package statement being used to define the package
that the Clothing class is in. Just as the class itself must be in a file of the same name as the class,
the file (in this case, Clothing.java) must be contained in a directory structure that matches the
package name.

Java SE 7 Fundamentals 14 - 7

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Packages in Source Code

The package that a class belongs to is defined in the source
code.

package duke.item;

public abstract class Clothing implements Searchable, Shippable {

private int itemID = 0;

private String description = "-description required-";

private char colorCode = 'U';

... < remaining code omitted > ...

This class is
in the

package
duke.item.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 8

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Packages

• JARs and deployment

• Two-tier and three-tier architecture

• The Duke's Choice application

• Application modifications and enhancements

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 9

To deploy a Java application, you typically put the necessary files into a JAR file. This greatly
simplifies running the application on another machine.

A JAR file is much like a zip file (or a tar file on UNIX) and contains the entire directory structure
for the compiled classes plus an additional MANIFEST.MF file in the META-INF directory. This
MANIFEST.MF file tells the Java runtime which file contains the main() method.

You can create a JAR file by using a command-line tool called jar, but most IDEs make the
creation easier. In the following slides, you see how to create a JAR file using NetBeans.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

DukesChoice.jar

duke/

item/

purchase/

ConvertSize.class

Clothing.class

Shirt.class

…

Customer.class

Shipping.class
…

util/

MANIFEST.MF

META-INF/

The JAR file contains
the class directory
structure plus
a manifest file.

Manifest file
MANIFEST.MF

added

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 10

Before you create the JAR file, you need to indicate which file contains the main() method. This
is subsequently written to the MANIFEST.MF file.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Set Main Class of Project

Right-click the
project and select

Properties.

1

Select Run.

2
Enter the name of

the main class.

3

Click OK.
4

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 11

You create the JAR file by right-clicking the project and selecting “Clean and Build.” For a small
project such as DukesChoice, this should take only a few seconds.

• Clean removes any previous builds.

• Build creates a new JAR file.

You can also run “Clean” and “Build” separately.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating the JAR File with NetBeans

Right-click the
project and select
“Clean and Build.”

Check the output to
ensure the build is

successful.

1

2

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 12

By default, the JAR file will be placed in the dist directory. (This directory is removed in the clean
process and re-created during build.) Using the files tab of NetBeans, you can look inside the JAR
file and make sure that all the correct classes have been added.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Creating the JAR File with NetBeans

Now a new
directory in the

Project

DukesChoice.jar
under dist directory

The JAR file contains
the class directory
structure plus
a manifest file.

MANIFEST.MF
added under
META-INF

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 13

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Packages

• JARs and deployment

• Two-tier and three-tier architecture

• The Duke's Choice application

• Application modifications and enhancements

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

A major performance penalty is paid in two-tier client/server. The client software ends up larger
and more complex because most of the logic is handled there. The use of server-side logic is
limited to database operations. The client here is referred to as a thick client.
Thick clients tend to produce frequent network traffic for remote database access. This works well
for intranet-based and local area network (LAN)–based network topologies, but produces a large
footprint on the desktop in terms of disk and memory requirements. Also, not all back-end
database servers are the same in terms of server logic offered, and all of them have their own API
sets that programmers must use to optimize and scale performance.

Java SE 7 Fundamentals 14 - 14

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Client/Server Two-Tier Architecture

Client/server computing involves two or more computers
sharing tasks:

• Each computer performs logic appropriate to its design
and stated function.

• The front-end client communicates with the back-end
database.

• Client requests data from back end.

• Server returns appropriate results.

• Client handles and displays data.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The three components or tiers of a three-tier client/server environment are presentation, business
logic or functionality, and data. They are separated so that the software for any one of the tiers can
be replaced by a different implementation without affecting the other tiers.

For example, if you want to replace a character-oriented screen (or screens) with a GUI (the
presentation tier), you write the GUI using an established API or interface to access the same
functionality programs in the character-oriented screens.

The business logic offers functionality in terms of defining all of the business rules through which
the data can be manipulated. Changes to business policies can affect this layer without having an
impact on the actual databases.

The third tier, or data tier, includes existing systems, applications, and data that have been
encapsulated to take advantage of this architecture with minimal transitional programming effort.

Java SE 7 Fundamentals 14 - 15

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Client/Server Three-Tier Architecture

• Three-tier client/server is a more complex, flexible
approach.

• Each tier can be replaced by a different implementation:
– Presentation can be GUI, web, smartphone, or even console.

– Business logic defines business rules.

– Data tier is an encapsulation of all existing data sources.

Presentation Business Logic Data

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 16

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Packages

• JARs and deployment

• Two-tier and three-tier architecture

• The Duke's Choice application

• Application modifications and enhancements

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

A version of the Duke's Choice application has been created to illustrate object-oriented
programming in Java.

Java SE 7 Fundamentals 14 - 17

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

The Duke's Choice Application

• Abstract classes
– Clothing

— Extended by Shirt and other clothing classes

– Camping
— Extended by Tent and other camping classes

• Interfaces
– Searchable

— All purchasable items implement Searchable.

– Returnable
— Items that can be returned implement Returnable.

– Shippable
— Items that can be shipped implement Shippable.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Clothing class is very similar to the Shirt class you have seen earlier in the course.
However, to ensure that there is a unique code for every type of item, a field SKU (Stock Keeping
Unit) has been added.

Java SE 7 Fundamentals 14 - 18

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Clothing Class

package duke.item;

public abstract class Clothing implements Searchable, Shippable {

private String sku = "";

private int itemID = 0; // Default ID for all clothing items

private String description = "-description required-"; // default

private char colorCode = 'U'; // Exception if invalid color code?

private double price = 0.0; // Default price for all items

private int quantityInStock = 0;

public Clothing(int itemID, String description, char colorCode,
double price, int quantityInStock) {

this.itemID = itemID;

this.description = description;

this.colorCode = colorCode;

this.price = price;

this.quantityInStock = quantityInStock;

this.sku = "" + itemID + colorCode;

... < more code follows > ...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In addition to the previous method, display(), to display details of the item, a getDisplay()
method has been added that returns a String. This allows the method to be called by different
clients. It takes one argument: a String that determines how the individual attributes of the item are
separated. For example, they could be separated with a new line in the console version of the
application, or with an HTML element for the web application.

Java SE 7 Fundamentals 14 - 19

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Clothing Class

public String getDisplay(String separator) {

String displayString = "SKU: " + getSku() + separator +

"Item: " + description + separator +

"Price: " + price + separator +

"Color: " + colorCode + separator +

"Available: " + quantityInStock;

return displayString;

}

... < more code follows > ...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 20

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Presentation

Tiers of Duke's Choice

Business Logic Data

C:\java –jar
"C:\work\DukesChoice\di
st\DukesChoice.jar find
111

DukesDB

addItems()

findItems()

removeItems()

Class to
represent the
data source

Two possible
user interfaces

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 21

Running the command-line application using the JAR file is very straightforward and the
instructions are actually given in the output window for the build process. (If it were implemented
as a GUI application, it would be run the same way.)

Assuming the application is an early command-line version of the software that has been sent to
Duke's Choice for testing, you run it as shown in the slide. Because it is an early version, assume
that it is only for the use of Duke's Choice employees and requires parameters to be added at the
command line to do anything.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Running the JAR File from the Command Line

C:\java –jar "C:\work\DukesChoice\dist\DukesChoice.jar

Output:

Please add parameters in the format:

find <item id number>

OR

remove <sku> <number to remove>

The command to
run the JAR file

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this simple application, commands are entered using command-line parameters and SKU or
item IDs. So you can assume that Duke's Choice employees have been given a list of the
appropriate item IDs so that they can try the application.

In the example, the application is finding all kinds of casual shirts in stock. Currently there are two
kinds of casual shirt in stock: red and blue. You can also see that 63 red shirts and 20 blue ones
are in stock.

Java SE 7 Fundamentals 14 - 22

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Listing Items from the Command Line

C:\java –jar "C:\work\DukesChoice\dist\DukesChoice.jar find 111

Output:

--

SKU: 111R | Item: Casual Shirt | Price: 34.29 | Color: R | Available: 63

--

SKU: 111B | Item: Casual Shirt | Price: 25.05 | Color: B | Available: 20

--

Casual Shirt: 111
Dress Trousers: 120
Sports Socks: 131

...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Here is the other possible application for Duke's Choice―a simple web application. In this case,
DukesChoice.jar is copied to the application server, where it can be accessed by the UI
components of the application (in this case, by Java Server Pages [JSP] files).

The screenshot shows the main search page that allows customers to search for a particular item.
They can pick an item from a drop-down list, and all of the varieties of the item are then listed. In
the example in the slide, the list shows the same information as the command-line application: two
colors of shirt and the available quantity of each.

The web application also allows a customer to click the SKU number of a particular item and, by
doing so, navigate to a page that shows further details about that item.

Java SE 7 Fundamentals 14 - 23

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Listing Items in Duke's Choice Web Application

The Search
page has a
drop-down

menu.
The current

items in stock
are shown.

Selecting an item
displays a list of all

those items.
The SKU

for the item
is an

anchor tag.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The screen shown in the slide shows the details of the item that the customer selected. On this
page, customers can add a specific number of shirts to their orders.

The two applications shown (the command-line application and this web application) use classes
very similar to the Shirt class you were introduced to at the very beginning of the course. Even
though the user interface of the command-line version is very different from the web version, the
item classes (Shirt, Trousers, Socks, Tent, and Fuel) are not in any way involved in the
presentation of the data, so it is possible to modify any of these classes or add additional classes
without having to change the user interface.

Java SE 7 Fundamentals 14 - 24

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Listing Items in Duke's Choice Web Application

Details of the
shirt, including
how many are

available

Click to order

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 25

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Topics

• Packages

• JARs and deployment

• Two-tier and three-tier architecture

• Duke's Choice application

• Application modifications and enhancements

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 26

In the following slides, you see what is involved in adding another item class to represent a dress
suit.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Enhancing the Application

• Well-designed Java software minimizes the time required
for:
– Maintenance

– Enhancements

– Upgrades

• For Duke's Choice, it should be easy to:
– Add new items to sell (business logic)

– Develop new clients (presentation)
— Take the application to a smartphone (for example)

– Change the storage system (data)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 27

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Adding a New Item for Sale

It is possible to add a new item for sale by:

• Extending the Clothing or Camping class, or even creating
a new category (for example, Books)

• Adding any new unique features for the item

• Adding some of the new items to the data store

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 28

NetBeans is helpful when extending abstract classes and implementing interfaces because it
gives you hints about what you need to do. In the example in the slide, the new class Suit
extends Clothing and implements Returnable. NetBeans flags that you need to implement
the methods of the Returnable interface (in this case, the doReturn() method).

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Adding a New Item for Sale

Returnable is an
interface and

must be
implemented.

Suit is a type
of Clothing.

Returns are
permitted.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code shows a simple example of implementing the doReturn() method of the Returnable
interface.

Java SE 7 Fundamentals 14 - 29

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Implement Returnable

public class Suit extends Clothing implements Returnable {

public String doReturn() {

// In the current implementation Returnable provides

// a marker that the item can be returned and also returns

// a String with conditions for returning the item

return "Suit returns must be within 3 days";

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

This code shows the implementation of the constructor for the Suit type, given that:

• Suit has an extra attribute, suitType, that is not in the superclass Clothing

• This extra attribute is combined with the SKU (generated in the Clothing superclass) to
create a unique SKU for this item

Java SE 7 Fundamentals 14 - 30

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Implement Constructor

public class Suit extends Clothing implements Returnable {

...< code omitted > ...

// Types are D = Double-breasted, S = Single-breasted, U=Unset

private char suitType = 'U'; //

// Constructor

public Suit(int itemID, String description, char colorCode,
double price, char type, int quantityInStock) {

super(itemID, description, colorCode, price, quantityInStock);

setSuitType(type);

setSku(getSku() + type); // To create a unique SKU

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Clothing class has a getDisplay(String separator) method where a separator can be
specified so that the attributes of the item can be written on one line and separated by a separator
character, or written line by line using newline as the separator character.

The code in the slide shows getDisplay(String separator) being overridden to include the
suit type in the display.

C:\>java -jar "C:\work\Java_fundamentals\DukesChoice\dist\DukesChoice.jar" find
410

--

SKU: 410BD | Item: Suit | Color: B | Type: D | Price: 999.99 | Available: 21

--

SKU: 410BS | Item: Suit | Color: B | Type: S | Price: 789.99 | Available: 15

--

SKU: 410gD | Item: Suit | Color: G | Type: D | Price: 999.99 | Available: 21

--

SKU: 410WS | Item: Suit | Color: W | Type: S | Price: 789.99 | Available: 15

--

Java SE 7 Fundamentals 14 - 31

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Suit Class: Overriding getDisplay()

public String getDisplay(String separator) {

String displayString = "SKU: " + getSku() + separator +

"Item: " + getDescription() + separator +

"Color: " + getColorCode() + separator +

"Type: " + getSuitType() + separator +

"Price: " + getPrice() + separator +

"Available: " + getQuantityInStock();

return displayString;

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code shows the implementation of the getter and setter methods for the suit type. If 'D' or
'B' is not passed into the constructor, the method throws an IllegalArgumentException. Note that
IllegalArgumentException is an unchecked exception, so it does not need to be thrown from this
method or checked in the calling method.

Assuming it is not caught in the current implementation of the application, if an invalid argument is
passed into the method, the Duke's Choice testers see the following:

C:\>java -jar
"C:\work\Java_fundamentals\DukesChoice\dist\DukesChoice.jar"
find 410

Exception in thread "main" java.lang.IllegalArgumentException:
The suit type must be either D = Double-breasted or S = Single-breasted

at duke.item.Suit.setSuitType(Suit.java:43)

at duke.item.Suit.<init>(Suit.java:20)

at duke.init.DukesDB.setupDb(DukesDB.java:52)

at duke.init.DukesDB.<init>(DukesDB.java:84)

at duke.init.DBtest.main(DBtest.java:29)

Java SE 7 Fundamentals 14 - 32

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Implement Getters and Setters

public class Suit extends Clothing implements Returnable {

...< code omitted > ...

public char getSuitType() {

return suitType;

}

public void setSuitType(char suitType) {

if (suitType!='D' && suitType!='B') {

throw new IllegalArgumentException("The suit type must be"

+ " either D = Double-breasted "

+ "or S = Single-breasted"); }

this.suitType = suitType;

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Note that the JAR file is exactly the same in either case.

Java SE 7 Fundamentals 14 - 33

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Updating the Applications with the Suit Class

For the command-line application:
• Create a new DukesChoice.jar file.

• (Optional) Copy it to a new location on the file system or to
another machine.

For the web application:
• Create a new DukesChoice.jar file.

• Copy it to the directory that is used by the application
server for library files.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Now the testers at Duke's Choice can search for suits in stock. However, the display does not let
them know if the suit is single-breasted or double-breasted.

Java SE 7 Fundamentals 14 - 34

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Testing the Suit Class: Command Line

C:\>java -jar
"C:\work\Java_fundamentals\DukesChoice\dist\DukesChoice.jar"
find 410

--

SKU: 410BD | Item: Suit | Price: 999.99 | Color: B | Available: 21

--

SKU: 410BS | Item: Suit | Price: 789.99 | Color: B | Available: 15

--

SKU: 410gD | Item: Suit | Price: 999.99 | Color: G | Available: 14

--

SKU: 410WS | Item: Suit | Price: 789.99 | Color: W | Available: 18

--

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

After restarting the web application, the testers see an extra item in the drop-down menu for Dress
Suit, and the various kinds of Dress Suits that have been added to the data store are listed with
their SKUs.

Java SE 7 Fundamentals 14 - 35

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Testing the Suit Class: Web Application

A new item appears in
the drop-down menu.

The different kinds
of suits added to the
data store are listed.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

When you click one of the Dress Suits listed, the details are displayed. Notice that because the
getDisplay() method was overridden, the kind of suit (S for single-breasted) is displayed. No
modifications were made to the web application.

Java SE 7 Fundamentals 14 - 36

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Adding the Suit Class to the Web Application

The overridden
getDisplay()
method ensures

that the suit type is
displayed.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 37

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Deploy a simple application as a JAR file

• Describe the parts of a Java application, including the user
interface and the back end

• Describe how classes can be extended to implement new
capabilities in the application

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 38

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

No Practice for This Lesson

This lesson has no practices.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 39

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Course Summary

In this course, you should have learned how to:

• List and describe several key features of the Java
technology, such as that it is object-oriented, multi-
threaded, distributed, simple, and secure

• Identify different Java technology groups

• Describe examples of how Java is used in applications, as
well as consumer products

• Describe the benefits of using an integrated development
environment (IDE)

• Develop classes and describe how to declare a class

• Analyze a business problem to recognize objects and
operations that form the building blocks of the Java
program design

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 40

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Course Summary

• Define the term object and its relationship to a class

• Demonstrate Java programming syntax

• Write a simple Java program that compiles and runs
successfully

• Declare and initialize variables

• List several primitive data types

• Instantiate an object and effectively use object reference
variables

• Use operators, loops, and decision constructs

• Declare and instantiate arrays and ArrayLists and be able
to iterate through them

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Fundamentals 14 - 41

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Course Summary

• Use Javadocs to look up Java foundation classes

• Declare a method with arguments and return values

• Use inheritance to declare and define a subclass of an
existing superclass

• Describe how errors are handled in a Java program

• Describe how to deploy a simple Java application by using
the NetBeans IDE

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Java Language Quick Reference

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

1. Declare a class
public class Shirt{ class declaration
}

2. Declare a field/variable
public char colorCode; field variable
int counter; local variable

3. Declare and initialize a primitive variable
public double price = 0.0; field variable
int hour = 12; local variable

4. Declare and instantiate an object reference
public ArrayList names = new ArrayList();

5. Invoke a method
displayInformation(); method with no arguments or return value
setColorCode('R'); method with one argument and no return value
int level = getLevel(); method with no arguments but returning a value

6. Declare a method
public void displayInformation(){…} method : no args, returns void
public String getName() {…} method: no args, returns String
public void setName(String name){…} method: String arg, returns void

7. If/else block
If (name1.equals(name2)) {

System.out.println();
}
else {

System.out.println("Different name.");
}

8. Switch construct Syntax
switch (variable) {

case literal_value:

<code_block>

[break;]

case another_literal_value:

<code_block>

[break;]

[default:]

<code_block>

}

Java SE 7 Fundamentals A - 2

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

9. Structure of a Class

package myClasses; package statement

import java.util.ArrayList; import statement

public class NamesList{ class declaration
public ArrayList names = new ArrayList(); field

public void setList(){ method

// code_block;

} end of method

} end of class

10. While construct syntax
while (boolean_expression) {

// do this while expression remains true

// code_block;

} // end of while block

11. Do/while construct syntax
do { // do the following once before evaluating expression

// then continue to do this while expression remains true

// code_block

}

while (boolean_expression);

12. For loop syntax

for (data_type init_var; boolean_expression; increment){

// code_block;

}

example

for (int i = 1; i<10; i++){

System.out.println("Array element: " + myArray[i]);

}

Java SE 7 Fundamentals A - 3

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

13. Enhanced for loop syntax

for (data_type var : array_name) {
// code_block;

}

example

for (Object obj : myList){

System.out.println("List element: "+ obj);

}

Java SE 7 Fundamentals A - 4

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

UMLet Tips

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

1. How to add elements to the diagram
Double-click any element in the palette; it appears in the upper-left corner of the main
diagram window.

2. How to duplicate elements on the diagram
Double-click an element to duplicate it. Alternatively, you can copy and paste (or you can
use their respective keyboard equivalents of Ctrl + C and Ctrl + V).

3. How to select multiple elements
Press and hold Ctrl to select multiple elements.

4. How to lasso-select multiple elements
Press Ctrl and click to select a rectangle containing the desired elements.

5. How to change UML elements
Select an element and modify its attributes in the lower-right text panel. Each element type
has a simple markup language (for example, the text “/ClassName/” causes “ClassName”
to become italic). The markup languages are best explored via the sample UML elements
in the palettes.

Java SE 7 Fundamentals B - 2

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

UML Default Interface

Diagram area

Selected element
Properties window

Element palette

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

6. How to enter comments in a UML element description
UMLet supports C++-style comments. Starting a line with “//” (for example, “//my comment..”)
enables UMLet to ignore that markup line.

7. How to change the color of UML elements
Right-click an element and select its background or foreground color via the context menu.

8. Alternatively, just type the name of the color in the element description (for example,
“bg=black”, or “fg=red”).

9. How to create UML relations
Double-click a relation, and then drag its end points to the borders of UML elements; they
will stick there.

10. How to edit the relations
Many UML tools make it time consuming to change the type or direction of a relation. In
UMLet, simply modify the linetype (that is, by changing the line “lt=“ in the element
description). For example, change “lt=<.” to “lt=->>” to change the direction, the arrow type,
and the line’s dots at the same time.

11. How to label relations
Edit the name of a relation in the relation’s description.
Role names can be specified using “r1=” or “r2=”.
For multiplicities, use “m1=” or “m2=”.
Qualifiers are done with “q1=” or “q2=”.

12. How to create sequence diagrams
Change the current palette to “Sequence - all in one”. Add the sequence diagram element to
the diagram by double-clicking.
This element’s markup language is slightly more complex. The main idea is that each lane
has a name and an ID (defined by the string “_name~ID_”). The IDs can then be used to
define messages between lanes (for example, “id1->id3”).

13. How to create activity diagrams
Change the current palette to “Activity - all in one”. Add the activity diagram element to the
diagram by double-clicking.
Here, TABs in the element description are used to define the activity forks.

Java SE 7 Fundamentals B - 3

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

UML Basics
The Unified Modeling Language (UML) is a graphical language for modeling software systems.
The UML is not:

• A programming language: It is a set of diagrams that can be used to specify, construct,
visualize, and document software designs. Software engineers use UML diagrams to
construct and explain their software designs just as building architects use blueprints to
construct and explain their building designs. UML has diagrams to assist in every part of
application development, from requirements gathering through design, coding, testing, and
deployment.

• A process for analysis and design: Its diagrams must be used with a process.
The UML was developed in the early 1990s by three leaders in the object-modeling world:
Grady Booch, James Rumbaugh, and Ivar Jacobson. Their goal was to unify the major methods
that they had previously developed to create a new standard for software modeling. UML is now
the most commonly used modeling language. The UML specification is currently maintained by
the Object Management Group (OMG) and is available on the OMG website at
http://www.omg.org/uml/.
General Elements
In general, UML diagrams represent:

• Concepts, which are depicted as symbols (also called nodes)
• Relationships among those concepts, which are depicted as paths (also called links) that

connect the symbols
These nodes and links are specialized for each particular diagram. For example, in Class
diagrams, the nodes represent object classes and the links represent associations between
classes and generalization (inheritance) relationships.

Java SE 7 Fundamentals B - 4

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Resources

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

You can find many resources on the Java SE 7 pages of OTN, including:

• Downloads

• Documentation

• Java Community

• Technologies

• Training

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Java SE 7 Fundamentals C - 2

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Java on Oracle Technology Network (OTN)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Downloads link provides the latest and previous releases for Java SE (runtime and JDK),
JavaFX, Java EE, and NetBeans.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Java SE 7 Fundamentals C - 3

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Java SE Downloads

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

You can find many resources on the Documentation page, including:

• Code

• API

• Tutorials

• Technical Articles

• …and more

The Java SE Documentation link includes more developer information such as:

• API documentation

• Java language and Virtual Machine specifications

• Developer guides

• JDK / JRE Installation Instructions

• …and more

Documentation page:
http://www.oracle.com/technetwork/java/javase/documentation/index.html

Java SE Technical Documentation page: http://download.oracle.com/javase/

Java SE 7 Fundamentals C - 4

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Java Documentation

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

What is the Java Community? We frequently hear about the Java Community, as well as a
variety of acronyms related to Java that you may not be familiar with, such as JUGs, JCP EC,
and OpenJDK.

At a very high level, the Java Community is the term used to refer to the many individuals and
organizations that develop, innovate, and use Java technology.

The Java Community page includes links to:

• Forums: The Java technology discussion forums are interactive message boards for
sharing ideas and insights on Java technologies and programming techniques.

• User groups: Members of the Java User Groups meet regularly to exchange technical
ideas and information.

• Java Developer Newsletter: The Java Developer Newsletter is a free, monthly online
communication that includes news, technical articles, and events.

• Blogs such as the following:

- The Java Source

- Java Oracle Blogs

• Java Developer events
http://www.oracle.com/technetwork/java/javase/community/index.html

Java SE 7 Fundamentals C - 5

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Java Community

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Forums: The Java technology discussion forums are interactive message boards for JUGs.
A Java User Group (JUG) is a group of people who share a common interest in Java
technology and meet on a regular basis to share technical ideas and information. The actual
structure of a JUG can vary greatly―from a small number of friends and coworkers meeting
informally in the evening to a large group of companies based in the same geographic area.
Regardless of the size and focus of a particular JUG, the sense of community spirit remains
the same.

OpenJDK (also known as Open Java Development Kit): A free and open
source implementation of the Java programming language. In addition to Oracle, other
contributors such as RedHat, IBM, and Apple all contribute to OpenJDK.

JCP: JCP stands for Java Community Process, a formalized process that allows interested
parties to get involved in the definition of future versions and features of the Java platform.
The JCP Executive Committee (EC) is the group of members guiding the evolution of Java
technology. The EC represents both major stakeholders and a representative cross-section of
the Java Community.

Java SE 7 Fundamentals C - 6

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Java Community: Expansive Reach

Mobile &
Embedded

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java.net is a large community of Java developers and their projects. It welcomes anyone
interested in Java, related JVM technologies, and education to the discussions and projects
on the site. Java.net manages projects in a different way from most groups by maintaining
curated communities of projects. That is, projects that use similar technologies or are similar
types are grouped together in an area to make it easier to find other developers with similar
interests and skills and their projects. The site offers technical articles, news on events, and
blogs.

Java SE 7 Fundamentals C - 7

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Java Community: Java.net

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Java Technologies page includes a click map that describes all the Java SE Platform
technologies in detail.

http://www.oracle.com/technetwork/java/javase/tech/index.html

Java SE 7 Fundamentals C - 8

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Java Technologies

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The “Java SE Training and Certification” page describes the available Java training as well as
the Java Certification program. Oracle University offers courses that will introduce you to the
Java programming language and technology so you can code smarter and develop robust
programs and applications more quickly using any platform, including Oracle’s application
server and web infrastructure software. Validate your competency and dedication with a Java
Certification―one of the most recognized credentials in the industry.

The latest Java SE training courses include:

• Java SE 7 New Features
• Java Performance Tuning and Optimization
• Java SE 7 Fundamentals
• Java SE 7 Programming
http://www.oracle.com/technetwork/java/javase/training/index.html

Java SE 7 Fundamentals C - 9

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Java Training

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Oracle Learning Library (OLL) features technical articles, white papers, videos,
demonstrations, and Oracle by Example (OBE) tutorials on many topics, including Java.
The site does require an Oracle Technology Network (OTN) login, but all content is free of
charge. The OLL is available at oracle.com/oll.

Java SE 7 Fundamentals C - 10

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Oracle Learning Library

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Subscribe to Java Magazine, a bi-monthly magazine that is an essential source of knowledge
about Java technology, the Java programming language, and Java-based applications for
people who rely on them in their professional careers―or who aspire to.

http://www.oracle.com/technetwork/java/javamagazine/index.html

Java SE 7 Fundamentals C - 11

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Java Magazine

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

	Java SE 7 Fundamentals - Student Guide - Volume II
	Table of Contents
	Chapter 8: Creating and Using Arrays
	Objectives
	Topics
	Introduction to Arrays
	One-Dimensional Arrays
	Creating One-Dimensional Arrays
	Array Indices and Length
	Topics
	Declaring a One-Dimensional Array
	Instantiating a One-Dimensional Array
	Initializing a One-Dimensional Array
	Declaring
	Accessing a Value Within an Array
	Storing Arrays in Memory
	Storing Arrays of References in Memory
	Quiz
	Topics
	Using the args Array in the main Method
	Converting String Arguments to Other Types
	Topics
	Describing Two-Dimensional Arrays
	Declaring a Two-Dimensional Array
	Instantiating a Two-Dimensional Array
	Initializing a Two-Dimensional Array
	Topics
	ArrayList Class
	Class Names and the Import Statement
	Working with an ArrayList
	Quiz
	Summary
	Practice 8-1 Overview: Creating a Class with a One-Dimensional Array of Primitive Types
	Practice 8-2 Overview: Creating and Working with an ArrayList
	Practice 8-3 Overview: Using Runtime Arguments and Parsing the args Array

	Chapter 9: Using Loop Constructs
	Objectives
	Topics
	Loops
	Repeating Behavior
	Creating while Loops
	while Loop in Elevator
	Types of Variables
	while Loop: Example 1
	while Loop: Example 2
	while Loop with Counter
	Topics
	for Loop
	Developing a for Loop
	Topics
	Nested for Loop
	Nested while Loop
	Topics
	Loops and Arrays
	for Loop with Arrays
	Setting Values in an Array
	Enhanced for Loop with Arrays
	Enhanced for Loop with ArrayLists
	Using break with Loops
	Using continue with Loops
	Topics
	Coding a do/while Loop
	Topics
	Comparing Loop Constructs
	Quiz
	Summary
	Practice 9-1 Overview: Writing a Class That Uses a for Loop
	Practice 9-2 Overview: Writing a Class That Uses a while Loop
	Challenge Practice 9-3 Overview: Converting a while Loop to a for Loop
	Practice 9-4 Overview: Using for Loops to Process an ArrayList
	Practice 9-5 Overview: Writing a Class That Uses a Nested for Loop to Process a Two-Dimensional Array
	Challenge Practice 9-6 Overview: Adding a Search Method to ClassMap

	Chapter 10: Working with Methods and Method Overloading
	Objectives
	Topics
	Creating and Invoking Methods
	Basic Form of a Method
	Invoking a Method in a Different Class
	Caller and Worker Methods
	Passing Arguments and Returning Values
	Creating a Method with a Parameter
	Creating a Method with a Return Value
	Invoking a Method in the Same Class
	How Arguments Are Passed to Methods
	Passing by Value
	Advantages of Using Methods
	Quiz
	Invoking Methods: Summary
	Topics
	Math Utilities
	Static Methods in Math
	Creating static Methods and Variables
	static Variables
	Static Methods and Variables in the Java API
	Topics
	Method Signature
	Method Overloading
	Using Method Overloading
	Method Overloading and the Java API
	Quiz
	Summary
	Practice 10-1 Overview: Writing a Method with Arguments and Return Values
	Challenge Practice 10-2 Overview: Writing a Class That Contains an Overloaded Method

	Chapter 11: Using Encapsulation and Constructors
	Objectives
	Topics
	Overview
	public Modifier
	Dangers of Accessing a public Field
	private Modifier
	Trying to Access a private Field
	private Modifier on Methods
	Interface and Implementation
	Get and Set Methods
	Using Setter and Getter Methods
	Setter Method with Checking
	Using Setter and Getter Methods
	Encapsulation: Summary
	Topics
	Initializing a Shirt Object
	Constructors
	Creating Constructors
	Initializing a Shirt Object by Using a Constructor
	Multiple Constructors
	Quiz
	Summary
	Practice 11-1 Overview: Implementing Encapsulation in a Class
	Challenge Practice 11-2 Overview: Adding Validation to the DateThree Class
	Practice 11-3 Overview: Creating Constructors to Initialize Objects

	Chapter 12: Using Advanced Object-Oriented Concepts
	Objectives
	Topics
	Class Hierarchies
	Topics
	Common Behaviors
	Code Duplication
	Inheritance
	Overriding Superclass Methods
	Clothing Superclass: 1
	Clothing Superclass: 2
	Clothing Superclass: 3
	Declaring a Subclass
	Declaring a Subclass (extends
	Declaring a Subclass: 2
	Abstract Classes
	Abstract Clothing Superclass: 1
	Abstract Clothing Superclass: 2
	Superclass and Subclass Relationships
	Another Inheritance Example
	Topics
	Superclass Reference Types
	Access to Object Functionality
	Accessing Class Methods from Superclass
	Casting the Reference Type
	Casting
	instanceof Operator
	Polymorphic Method Calls
	Quiz
	Topics
	Multiple Hierarchies
	Interfaces
	Implementing the Returnable Interface
	Access to Object Methods from Interface
	ArrayList
	List Interface
	Topics
	Object Class
	Calling the toString() Method
	Quiz
	Summary
	Practice 12-1 Overview: Creating and Using Superclasses and Subclasses
	Practice 12-2 Overview: Using a Java Interface

	Chapter 13: Handling Errors
	Objectives
	Topics
	Reporting Exceptions
	How Exceptions Are Thrown
	Types of Exceptions
	OutOfMemoryError
	Topics
	Method Stack
	Call Stack: Example
	Throwing Throwables
	Working with Exceptions in NetBeans
	Catching an Exception
	Uncaught Exception
	Exception Printed to Console
	Summary of Exception Types
	Quiz
	Topics
	Exceptions in the Java API Documentation
	Calling a Method That Throws an Exception
	Working with a Checked Exception
	Best Practices
	Bad Practices
	Topics
	Multiple Exceptions
	Catching IOException
	Catching IllegalArgumentException
	Catching Remaining Exceptions
	Summary
	Practice 13-1 Overview: Using a Try/Catch Block to Handle an Exception
	Practice 13-2 Overview: Catching and Throwing a Custom Exception

	Chapter 14: Deploying and Maintaining the Duke's Choice Application
	Objectives
	Topics
	Packages
	Packages Directory Structure
	Packages in NetBeans
	Packages in Source Code
	Topics
	DukesChoice.jar
	Set Main Class of Project
	Creating the JAR File with NetBeans
	Topics
	Client/Server Two-Tier Architecture
	Client/Server Three-Tier Architecture
	Topics
	The Duke's Choice Application
	Clothing Class
	Tiers of Duke's Choice
	Running the JAR File from the Command Line
	Listing Items from the Command Line
	Listing Items in Duke's Choice Web Application
	Topics
	Enhancing the Application
	Adding a New Item for Sale
	Implement Returnable
	Implement Constructor
	Suit Class: Overriding getDisplay()
	Implement Getters and Setters
	Updating the Applications with the Suit Class
	Testing the Suit Class: Command Line
	Testing the Suit Class: Web Application
	Adding the Suit Class to the Web Application
	Summary
	No Practice for This Lesson
	Course Summary

	Chapter 15: Java Language Quick Reference
	Chapter 16: UMLet Tips
	UML Default Interface

	Chapter 17: Resources
	Java on Oracle Technology Network (OTN)
	Java SE Downloads
	Java Documentation
	Java Community
	Java Community: Expansive Reach
	Java Community: Java.net
	Java Technologies
	Java Training
	Oracle Learning Library
	Java Magazine

