
Java SE 7 Programming

Student Guide - Volume II

D67238GC20

Edition 2.0

June 2012

D74997

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered
in any way. Except where your use constitutes "fair use" under copyright law, you
may not use, share, download, upload, copy, print, display, perform, reproduce,
publish, license, post, transmit, or distribute this document in whole or in part without
the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Authors
Michael Williams
Tom McGinn
Matt Heimer

Technical Contributors
and Reviewers
Peter Hall
Marnie Knue
Lee Klement
Steve Watts
Brian Earl
Vasily Strelnikov
Andy Smith
Nancy K.A.N
Chris Lamb
Todd Lowry
Ionut Radu
Joe Darcy
Brian Goetz
Alan Bateman
David Holmes

Editors
Richard Wallis
Daniel Milne
Vijayalakshmi Narasimhan

Graphic Designer
James Hans

Publishers
Syed Imtiaz Ali
Sumesh Koshy

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 iii

Contents

1 Introduction

Course Goals 1-2
Course Objectives 1-3
Audience 1-5
Prerequisites 1-6
Class Introductions 1-7
Course Environment 1-8
Java Programs Are Platform-Independent 1-9
Java Technology Product Groups 1-10
Java SE Platform Versions 1-11
Downloading and Installing the JDK 1-12
Java in Server Environments 1-13
The Java Community 1-14
The Java Community Process (JCP) 1-15
OpenJDK 1-16
Oracle Java SE Support 1-17
Additional Resources 1-18
Summary 1-19

2 Java Syntax and Class Review

Objectives 2-2
Java Language Review 2-3
Class Structure 2-4
A Simple Class 2-5
Code Blocks 2-6
Primitive Data Types 2-7
Java SE 7 Numeric Literals 2-9
Java SE 7 Binary Literals 2-10
Operators 2-11
Strings 2-12
String Operations 2-13
if else 2-14
Logical Operators 2-15
Arrays and for-each Loop 2-16
for Loop 2-17

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 iv

while Loop 2-18
String switch Statement 2-19
Java Naming Conventions 2-20
A Simple Java Class: Employee 2-21
Methods 2-22
Creating an Instance of an Object 2-23
Constructors 2-24
package Statement 2-25
import Statements 2-26
More on import 2-27
Java Is Pass-By-Value 2-28
Pass-By-Value for Object References 2-29
Objects Passed as Parameters 2-30
How to Compile and Run 2-31
Compiling and Running: Example 2-32
Java Class Loader 2-33
Garbage Collection 2-34
Summary 2-35
Quiz 2-36
Practice 2-1 Overview: Creating Java Classes 2-39

3 Encapsulation and Subclassing

Objectives 3-2
Encapsulation 3-3
Encapsulation: Example 3-4
Encapsulation: Private Data, Public Methods 3-5
Public and Private Access Modifiers 3-6
Revisiting Employee 3-7
Method Naming: Best Practices 3-8
Employee Class Refined 3-9
Make Classes as Immutable as Possible 3-10
Creating Subclasses 3-11
Subclassing 3-12
Manager Subclass 3-13
Constructors Are Not Inherited 3-14
Using super in Constructors 3-15
Constructing a Manager Object 3-16
What Is Polymorphism? 3-17
Overloading Methods 3-18
Methods Using Variable Arguments 3-19
Single Inheritance 3-21

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 v

Summary 3-22
Quiz 3-23
Practice 3-1 Overview: Creating Subclasses 3-27
(Optional) Practice 3-2 Overview: Adding a Staff to a Manager 3-28

4 Java Class Design

Objectives 4-2
Using Access Control 4-3
Protected Access Control: Example 4-4
Field Shadowing: Example 4-5
Access Control: Good Practice 4-6
Overriding Methods 4-7
Invoking an Overridden Method 4-9
Virtual Method Invocation 4-10
Accessibility of Overridden Methods 4-11
Applying Polymorphism 4-12
Using the instanceof Keyword 4-15
Casting Object References 4-16
Casting Rules 4-17
Overriding Object methods 4-19
Object toString Method 4-20
Object equals Method 4-21
Overriding equals in Employee 4-22
Overriding Object hashCode 4-23
Summary 4-24
Quiz 4-25
Practice 4-1 Overview: Overriding Methods and Applying Polymorphism 4-29

5 Advanced Class Design

Objectives 5-2
Modeling Business Problems with Classes 5-3
Enabling Generalization 5-4
Identifying the Need for Abstract Classes 5-5
Defining Abstract Classes 5-6
Defining Abstract Methods 5-7
Validating Abstract Classes 5-8
Quiz 5-9
static Keyword 5-10
Static Methods 5-11
Implementing Static Methods 5-12
Calling Static Methods 5-13

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 vi

Static Variables 5-14
Defining Static Variables 5-15
Using Static Variables 5-16
Static Imports 5-17
Quiz 5-18
Final Methods 5-19
Final Classes 5-20
Final Variables 5-21
Declaring Final Variables 5-22
Quiz 5-23
When to Avoid Constants 5-24
Typesafe Enumerations 5-25
Enum Usage 5-26
Complex Enums 5-27
Quiz 5-28
Design Patterns 5-29
Singleton Pattern 5-30
Nested Classes 5-31
Inner Class: Example 5-32
Anonymous Inner Classes 5-33
Quiz 5-34
Summary 5-35
Practice 5-1 Overview: Applying the Abstract Keyword 5-36
Practice 5-2 Overview: Applying the Singleton Design Pattern 5-37
Practice 5-3 Overview: (Optional) Using Java Enumerations 5-38
(Optional) Practice 5-4 Overview: Recognizing Nested Classes 5-39

6 Inheritance with Java Interfaces

Objectives 6-2
Implementation Substitution 6-3
Java Interfaces 6-4
Developing Java Interfaces 6-5
Constant Fields 6-6
Interface References 6-7
instanceof Operator 6-8
Marker Interfaces 6-9
Casting to Interface Types 6-10
Using Generic Reference Types 6-11
Implementing and Extending 6-12
Extending Interfaces 6-13
Interfaces in Inheritance Hierarchies 6-14

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 vii

Quiz 6-15
Design Patterns and Interfaces 6-16
DAO Pattern 6-17
Before the DAO Pattern 6-18
After the DAO Pattern 6-19
The Need for the Factory Pattern 6-20
Using the Factory Pattern 6-21
The Factory 6-22
The DAO and Factory Together 6-23
Quiz 6-24
Code Reuse 6-25
Design Difficulties 6-26
Composition 6-27
Composition Implementation 6-28
Polymorphism and Composition 6-29
Quiz 6-31
Summary 6-32
Practice 6-1 Overview: Implementing an Interface 6-33
Practice 6-2 Overview: Applying the DAO Pattern 6-34
(Optional) Practice 6-3 Overview: Implementing Composition 6-35

7 Generics and Collections

Objectives 7-2
Generics 7-3
Simple Cache Class Without Generics 7-4
Generic Cache Class 7-5
Generics in Action 7-6
Generics with Type Inference Diamond 7-7
Quiz 7-8
Collections 7-9
Collection Types 7-10
List Interface 7-11
ArrayList Implementation Class 7-12
ArrayList Without Generics 7-13
Generic ArrayList 7-14
Generic ArrayList: Iteration and Boxing 7-15
Autoboxing and Unboxing 7-16
Quiz 7-17
Set Interface 7-18
Set Interface: Example 7-19
Map Interface 7-20

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 viii

Map Types 7-21
Map Interface: Example 7-22
Deque Interface 7-23
Stack with Deque: Example 7-24
Ordering Collections 7-25
Comparable Interface 7-26
Comparable: Example 7-27
Comparable Test: Example 7-28
Comparator Interface 7-29
Comparator: Example 7-30
Comparator Test: Example 7-31
Quiz 7-32
Summary 7-33
Practice 7-1 Overview: Counting Part Numbers by Using a HashMap 7-34
Practice 7-2 Overview: Matching Parentheses by Using a Deque 7-35
Practice 7-3 Overview: Counting Inventory and Sorting with Comparators 7-36

8 String Processing

Objectives 8-2
Command-Line Arguments 8-3
Properties 8-5
Loading and Using a Properties File 8-6
Loading Properties from the Command Line 8-7
PrintWriter and the Console 8-8
printf format 8-9
Quiz 8-10
String Processing 8-11
StringBuilder and StringBuffer 8-12
StringBuilder: Example 8-13
Sample String Methods 8-14
Using the split() Method 8-15
Parsing with StringTokenizer 8-16
Scanner 8-17
Regular Expressions 8-18
Pattern and Matcher 8-19
Character Classes 8-20
Character Class: Examples 8-21
Character Class Code: Examples 8-22
Predefined Character Classes 8-23
Predefined Character Class: Examples 8-24
Quantifiers 8-25

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 ix

Quantifier: Examples 8-26
Greediness 8-27
Quiz 8-28
Boundary Matchers 8-29
Boundary: Examples 8-30
Quiz 8-31
Matching and Groups 8-32
Using the replaceAll Method 8-33
Summary 8-34
Practice 8-1 Overview: Parsing Text with split() 8-35
Practice 8-2 Overview: Creating a Regular Expression Search Program 8-36
Practice 8-3 Overview: Transforming HTML by Using Regular Expressions 8-37

9 Exceptions and Assertions

Objectives 9-2
Error Handling 9-3
Exception Handling in Java 9-4
The try-catch Statement 9-5
Exception Objects 9-6
Exception Categories 9-7
Quiz 9-8
Handling Exceptions 9-10
The finally Clause 9-11
The try-with-resources Statement 9-12
Suppressed Exceptions 9-13
The AutoCloseable Interface 9-14
Catching Multiple Exceptions 9-15
Declaring Exceptions 9-16
Handling Declared Exceptions 9-17
Throwing Exceptions 9-18
Custom Exceptions 9-19
Quiz 9-20
Wrapper Exceptions 9-21
Revisiting the DAO Pattern 9-22
Assertions 9-23
Assertion Syntax 9-24
Internal Invariants 9-25
Control Flow Invariants 9-26
Postconditions and Class Invariants 9-27
Controlling Runtime Evaluation of Assertions 9-28
Quiz 9-29

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 x

Summary 9-30
Practice 9-1 Overview: Catching Exceptions 9-31
Practice 9-2 Overview: Extending Exception 9-32

10 Java I/O Fundamentals

Objectives 10-2
Java I/O Basics 10-3
I/O Streams 10-4
I/O Application 10-5
Data Within Streams 10-6
Byte Stream InputStream Methods 10-7
Byte Stream OutputStream Methods 10-9
Byte Stream Example 10-10
Character Stream Reader Methods 10-11
Character Stream Writer Methods 10-12
Character Stream Example 10-13
I/O Stream Chaining 10-14
Chained Streams Example 10-15
Processing Streams 10-16
Console I/O 10-17
java.io.Console 10-18
Writing to Standard Output 10-19
Reading from Standard Input 10-20
Channel I/O 10-21
Practice 10-1 Overview: Writing a Simple Console I/O Application 10-22
Persistence 10-23
Serialization and Object Graphs 10-24
Transient Fields and Objects 10-25
Transient: Example 10-26
Serial Version UID 10-27
Serialization Example 10-28
Writing and Reading an Object Stream 10-29
Serialization Methods 10-30
readObject Example 10-31
Summary 10-32
Quiz 10-33
Practice 10-2 Overview: Serializing and Deserializing a ShoppingCart 10-37

11 Java File I/O (NIO.2)

Objectives 11-2
New File I/O API (NIO.2) 11-3

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xi

Limitations of java.io.File 11-4
File Systems, Paths, Files 11-5
Relative Path Versus Absolute Path 11-6
Symbolic Links 11-7
Java NIO.2 Concepts 11-8
Path Interface 11-9
Path Interface Features 11-10
Path: Example 11-11
Removing Redundancies from a Path 11-12
Creating a Subpath 11-13
Joining Two Paths 11-14
Creating a Path Between Two Paths 11-15
Working with Links 11-16
Quiz 11-17
File Operations 11-20
Checking a File or Directory 11-21
Creating Files and Directories 11-23
Deleting a File or Directory 11-24
Copying a File or Directory 11-25
Copying Between a Stream and Path 11-26
Moving a File or Directory 11-27
Listing a Directory’s Contents 11-28
Reading/Writing All Bytes or Lines from a File 11-29
Channels and ByteBuffers 11-30
Random Access Files 11-31
Buffered I/O Methods for Text Files 11-32
Byte Streams 11-33
Managing Metadata 11-34
File Attributes (DOS) 11-35
DOS File Attributes: Example 11-36
POSIX Permissions 11-37
Quiz 11-38
Practice 11-1 Overview: Writing a File Merge Application 11-41
Recursive Operations 11-42
FileVisitor Method Order 11-43
Example: WalkFileTreeExample 11-46
Finding Files 11-47
PathMatcher Syntax and Pattern 11-48
PathMatcher: Example 11-50
Finder Class 11-51
Other Useful NIO.2 Classes 11-52

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xii

Moving to NIO.2 11-53
Summary 11-54
Quiz 11-55
Practice 11-2 Overview: Recursive Copy 11-58
(Optional) Practice 11-3 Overview: Using PathMatcher to Recursively Delete 11-59

12 Threading

Objectives 12-2
Task Scheduling 12-3
Why Threading Matters 12-4
The Thread Class 12-5
Extending Thread 12-6
Starting a Thread 12-7
Implementing Runnable 12-8
Executing Runnable Instances 12-9
A Runnable with Shared Data 12-10
One Runnable: Multiple Threads 12-11
Quiz 12-12
Problems with Shared Data 12-13
Nonshared Data 12-14
Quiz 12-15
Atomic Operations 12-16
Out-of-Order Execution 12-17
Quiz 12-18
The volatile Keyword 12-19
Stopping a Thread 12-20
The synchronized Keyword 12-22
synchronized Methods 12-23
synchronized Blocks 12-24
Object Monitor Locking 12-25
Detecting Interruption 12-26
Interrupting a Thread 12-27
Thread.sleep() 12-28
Quiz 12-29
Additional Thread Methods 12-30
Methods to Avoid 12-31
Deadlock 12-32
Summary 12-33
Practice 12-1 Overview: Synchronizing Access to Shared Data 12-34
Practice 12-2 Overview: Implementing a Multithreaded Program 12-35

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xiii

13 Concurrency

Objectives 13-2
The java.util.concurrent Package 13-3
The java.util.concurrent.atomic Package 13-4
The java.util.concurrent.locks Package 13-5
java.util.concurrent.locks 13-6
Thread-Safe Collections 13-7
Quiz 13-8
Synchronizers 13-9
java.util.concurrent.CyclicBarrier 13-10
High-Level Threading Alternatives 13-11
java.util.concurrent.ExecutorService 13-12
java.util.concurrent.Callable 13-13
java.util.concurrent.Future 13-14
Shutting Down an ExecutorService 13-15
Quiz 13-16
Concurrent I/O 13-17
A Single-Threaded Network Client 13-18
A Multithreaded Network Client (Part 1) 13-19
A Multithreaded Network Client (Part 2) 13-20
A Multithreaded Network Client (Part 3) 13-21
A Multithreaded Network Client (Part 4) 13-22
A Multithreaded Network Client (Part 5) 13-23
Parallelism 13-24
Without Parallelism 13-25
Naive Parallelism 13-26
The Need for the Fork-Join Framework 13-27
Work-Stealing 13-28
A Single-Threaded Example 13-29
java.util.concurrent.ForkJoinTask<V> 13-30
RecursiveTask Example 13-31
compute Structure 13-32
compute Example (Below Threshold) 13-33
compute Example (Above Threshold) 13-34
ForkJoinPool Example 13-35
Fork-Join Framework Recommendations 13-36
Quiz 13-37
Summary 13-38
(Optional) Practice 13-1 Overview: Using the java.util.concurrent Package 13-39
(Optional) Practice 13-2 Overview: Using the Fork-Join Framework 13-40

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xiv

14 Building Database Applications with JDBC

Objectives 14-2
Using the JDBC API 14-3
Using a Vendor’s Driver Class 14-4
Key JDBC API Components 14-5
Using a ResultSet Object 14-6
Putting It All Together 14-7
Writing Portable JDBC Code 14-9
The SQLException Class 14-10
Closing JDBC Objects 14-11
The try-with-resources Construct 14-12
try-with-resources: Bad Practice 14-13
Writing Queries and Getting Results 14-14
Practice 14-1 Overview: Working with the Derby Database and JDBC 14-15
ResultSetMetaData 14-16
Getting a Row Count 14-17
Controlling ResultSet Fetch Size 14-18
Using PreparedStatement 14-19
Using CallableStatement 14-20
What Is a Transaction? 14-22
ACID Properties of a Transaction 14-23
Transferring Without Transactions 14-24
Successful Transfer with Transactions 14-25
Unsuccessful Transfer with Transactions 14-26
JDBC Transactions 14-27
RowSet 1.1: RowSetProvider and RowSetFactory 14-28
Using RowSet 1.1 RowSetFactory 14-29
Example: Using JdbcRowSet 14-31
Data Access Objects 14-32
The Data Access Object Pattern 14-33
Summary 14-34
Quiz 14-35
Practice 14-2 Overview: Using the Data Access Object Pattern 14-39

15 Localization

Objectives 15-2
Why Localize? 15-3
A Sample Application 15-4
Locale 15-5
Resource Bundle 15-6

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xv

Resource Bundle File 15-7
Sample Resource Bundle Files 15-8
Quiz 15-9
Initializing the Sample Application 15-10
Sample Application: Main Loop 15-11
The printMenu Method 15-12
Changing the Locale 15-13
Sample Interface with French 15-14
Format Date and Currency 15-15
Initialize Date and Currency 15-16
Displaying a Date 15-17
Customizing a Date 15-18
Displaying Currency 15-19
Quiz 15-20
Summary 15-21
Practice 15-1 Overview: Creating a Localized Date Application 15-22
(Optional) Practice 15-2 Overview: Localizing a JDBC Application 15-23

Appendix A: SQL Primer

Objectives A-2
Using SQL to Query Your Database A-3
SQL Statements A-4
Basic SELECT Statement A-5
Limiting the Rows That Are Selected A-7
Using the ORDER BY Clause A-8
INSERT Statement Syntax A-9
UPDATE Statement Syntax A-10
DELETE Statement A-11
CREATE TABLE Statement A-12
Defining Constraints A-13
Including Constraints A-16
Data Types A-18
Dropping a Table A-20
Summary A-21

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Exceptions and Assertions

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 9 - 2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

• Define the purpose of Java exceptions
• Use the try and throw statements

• Use the catch, multi-catch, and finally clauses

• Autoclose resources with a try-with-resources statement

• Recognize common exception classes and categories

• Create custom exceptions and auto-closeable resources

• Test invariants by using assertions

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Returning a Failure Result

Some programming languages use the return value of a method to indicate whether or not a
method completed successfully. For instance, in the C example int x = printf("hi");,
a negative value in x would indicate a failure. Many of C’s standard library functions return a
negative value upon failure. The problem is that the previous example could also be written as
printf("hi"); where the return value is ignored. In Java, you also have the same
concern; any return value can be ignored.

When a method you are writing in the Java language fails to execute successfully, consider
using the exception-generating and handling features available in the language instead of
using return values.

Java SE 7 Programming 9 - 3

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Error Handling

Applications will encounter errors while executing. Reliable
applications should handle errors as gracefully as possible.
Errors:

• Should be the “exception” and not the expected behavior

• Must be handled to create reliable applications

• Can occur as the result of application bugs

• Can occur because of factors beyond the control of the
application
– Databases becoming unreachable

– Hard drives failing

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Handle or Declare Rule

Many libraries that you use will require knowledge of exception handling. They include:

• File IO (NIO: java.nio)

• Database access (JDBC: java.sql)

Handling an exception means you use a try-catch statement to transfer control to an
exception-handling block when an exception occurs. Declaring an exception means to add a
throws clause to a method declaration, indicating that the method may fail to execute in a
specific way. To state it another way, handling means it is your problem to deal with and
declaring means that it is someone else’s problem to deal with.

Java SE 7 Programming 9 - 4

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Exception Handling in Java

When using Java libraries that rely on external resources, the
compiler will require you to “handle or declare” the exceptions
that might occur.

• Handling an exception means you must add in a code
block to handle the error.

• Declaring an exception means you declare that a method
may fail to execute successfully.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The catch Clause

When an exception occurs inside of a try block, execution will transfer to the attached
catch block. Any lines inside the try block that appear after exception are skipped and will
not execute. The catch clause should be used to:

• Retry the operation

• Try an alternate operation

• Gracefully exit or return

Avoid having an empty catch block. Silently swallowing an exception is a bad practice.

Java SE 7 Programming 9 - 5

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The try-catch Statement

The try-catch statement is used to handle exceptions.

try {

System.out.println("About to open a file");

InputStream in =

new FileInputStream("missingfile.txt");

System.out.println("File open");

} catch (Exception e) {

System.out.println("Something went wrong!");

}

This line is skipped if the
previous line failed to

open the file.

This line runs only if
something went wrong

in the try block.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Logging Exceptions

When things go wrong in your application, you will often want to record what happened. Java
developers have a choice of several logging libraries including Apache's Log4j and the built-in
java.util logging framework. While these logging libraries are beyond the scope of this
course, you may notice that IDEs such as NetBeans recommend that you should remove any
calls to printStackTrace(). This is because production-quality applications should use a
logging library instead of printing debug messages to the screen.

Java SE 7 Programming 9 - 6

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Exception Objects

A catch clause is passed a reference to a
java.lang.Exception object. The
java.lang.Throwable class is the parent class for
Exception and it outlines several methods that you may use.

try{

//...

} catch (Exception e) {

System.out.println(e.getMessage());

e.printStackTrace();

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Dealing with Exceptions
When an Exception object is generated and passed to a catch clause, it will be
instantiated from a class that represents the specific type of problem that occurred. These
exception-related classes can be divided into two categories: checked and unchecked.

Unchecked Exceptions

java.lang.RuntimeException and java.lang.Error and their subclasses are
categorized as unchecked exceptions. These types of exceptions should not normally occur
during the execution of your application. You may use a try-catch statement to help
discover the source of these exceptions, but when an application is ready for production use,
there should be little code remaining that deals with RuntimeException and its subclasses.
The Error subclasses represent errors that are beyond your ability to correct, such as the JVM
running out of memory. Common RuntimeExceptions that you may have to troubleshoot
include:

• ArrayIndexOutOfBoundsException: Accessing an array element that does not
exist

• NullPointerException: Using a reference that does not point to an object

• ArithmeticException: Dividing by zero

Java SE 7 Programming 9 - 7

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Exception Categories

The java.lang.Throwable class forms the basis of the
hierarchy of exception classes. There are two main categories
of exceptions:

• Checked exceptions,
which must be “handled
or declared”

• Unchecked exceptions,
which are not typically
“handled or declared”

Throwable

Error Exception

RuntimeException SQLException IOException

ArithmeticException FileNotFoundException

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b

Java SE 7 Programming 9 - 8

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

A NullPointerException must be caught by using a
try-catch statement.

a. True

b. False

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b, d

Java SE 7 Programming 9 - 9

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Which of the following types are all checked exceptions
(instanceof)?

a. Error

b. Throwable

c. RuntimeException

d. Exception

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Checked Exceptions
Every class that is a subclass of Exception except RuntimeException and its subclasses
falls into the category of checked exceptions. You must “handle or declare” these exceptions
with a try or throws statement. The HTML documentation for the Java API (Javadoc) will
describe which checked exceptions may be generated by a method or constructor and why.

Catching the most specific type of exception enables you to write catch blocks that are
targeted at handling very specific types of errors. You should avoid catching the base type of
Exception, because it is difficult to create a general purpose catch block that can deal with
every possible error.

Note: Exceptions thrown by the Java Persistence API (JPA) extend RuntimeException
and as such they are categorized as unchecked exceptions. These exceptions may need to
be “handled or declared” in production-ready code, even though you are not required to do so
by the compiler.

Java SE 7 Programming 9 - 10

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Handling Exceptions

You should always catch the most specific type of exception.
Multiple catch blocks can be associated with a single try.

try {

System.out.println("About to open a file");

InputStream in = new FileInputStream("missingfile.txt");

System.out.println("File open");

int data = in.read();

in.close();

} catch (FileNotFoundException e) {

System.out.println(e.getClass().getName());

System.out.println("Quitting");

} catch (IOException e) {

System.out.println(e.getClass().getName());

System.out.println("Quitting");

}

Order is important. You must
catch the most specific

exceptions first (that is, child
classes before parent

classes).

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Closing Resources

When you open resources such as files or database connections, you should always close
them when they are no longer needed. Attempting to close these resources inside the try
block can be problematic because you can end up skipping the close operation. A finally
block always runs regardless of whether or not an error occurred during the execution of the
try block. If control jumps to a catch block, the finally block will execute after the catch
block.

Sometimes the operation that you want to perform in your finally block may itself cause an
Exception to be generated. In that case, you may be required to nest a try-catch inside
of a finally block. You may also nest a try-catch inside of try and catch blocks.

Java SE 7 Programming 9 - 11

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The finally Clause

InputStream in = null;

try {

System.out.println("About to open a file");

in = new FileInputStream("missingfile.txt");

System.out.println("File open");

int data = in.read();

} catch (IOException e) {

System.out.println(e.getMessage());

} finally {

try {

if(in != null) in.close();

} catch(IOException e) {

System.out.println("Failed to close file");

}

}

You always want to
close open resources.

A finally clause runs regardless of whether
or not an Exception was generated.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Closeable Resources
The try-with-resources statement can eliminate the need for a lengthy finally block.
Resources opened using the try-with-resources statement are always closed. Any class that
implements the java.lang.AutoCloseable can be used as a resource. If a resource
should be autoclosed, its reference must be declared within the try statement’s parentheses.

Multiple resources can be opened if they are separated by semicolons. If you open multiple
resources, they will be closed in the opposite order in which you opened them.

Java SE 7 Programming 9 - 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The try-with-resources Statement

Java SE 7 provides a new try-with-resources statement that
will autoclose resources.

System.out.println("About to open a file");

try (InputStream in =

new FileInputStream("missingfile.txt")) {

System.out.println("File open");

int data = in.read();

} catch (FileNotFoundException e) {

System.out.println(e.getMessage());

} catch (IOException e) {

System.out.println(e.getMessage());

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Resource Exceptions
If an exception occurs while creating the AutoCloseable resource, control will immediately
jump to a catch block.

If an exception occurs in the body of the try block, all resources will be closed before the
catch block runs. If an exception is generated while closing the resources, it will be
suppressed.

If the try block executes with no exceptions, but an exception is generated during the closing
of a resource, control will jump to a catch block.

Java SE 7 Programming 9 - 13

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Suppressed Exceptions

If an exception occurs in the try block of a try-with-resources
statement and an exception occurs while closing the resources,
the resulting exceptions will be suppressed.

} catch(Exception e) {

System.out.println(e.getMessage());

for(Throwable t : e.getSuppressed()) {

System.out.println(t.getMessage());

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

AutoCloseable vs. Closeable
The Java API documentation has the following to say about AutoCloseable: "Note that
unlike the close method of Closeable, this close method is not required to be idempotent. In
other words, calling this close method more than once may have some visible side effect,
unlike Closeable.close, which is required to have no effect if called more than once.
However, implementers of this interface are strongly encouraged to make their close methods
idempotent."

Java SE 7 Programming 9 - 14

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The AutoCloseable Interface

Resource in a try-with-resources statement must implement
either:
• java.lang.AutoCloseable

– New in JDK 7
– May throw an Exception

• java.io.Closeable

– Refactored in JDK7 to extend AutoCloseable

– May throw an IOException

public interface AutoCloseable {

void close() throws Exception;

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Benefits of multi-catch

Sometimes you want to perform the same action regardless of the exception being generated.
The new multi-catch clause reduces the amount of code you must write, by eliminating the
need for multiple catch clauses with the same behaviors.

Another benefit of the multi-catch clause is that it makes it less likely that you will attempt to
catch a generic exception. Catching Exception prevents you from noticing other types of
exceptions that might be generated by code that you add later to a try block.

The type alternatives that are separated with vertical bars cannot have an inheritance
relationship. You may not list both a FileNotFoundException and an IOException in a
multi-catch clause.

File I/O and object serialization are covered in the lesson titled “Java I/O Fundamentals.”

Java SE 7 Programming 9 - 15

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Catching Multiple Exceptions

Java SE 7 provides a new multi-catch clause.

ShoppingCart cart = null;

try (InputStream is = new FileInputStream(cartFile);

ObjectInputStream in = new ObjectInputStream(is)) {

cart = (ShoppingCart)in.readObject();

} catch (ClassNotFoundException | IOException e) {

System.out.println("Exception deserializing " + cartFile);

System.out.println(e);

System.exit(-1);

} Multiple exception types
are separated with a

vertical bar.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Using the throws clause, a method may declare that it throws one or more exceptions during
execution. If an exception is generated while executing the method, the method will stop
executing and the exception will be thrown to the caller. Overridden methods may declare the
same exceptions, fewer exceptions, or more specific exceptions, but not additional or more
generic exceptions. A method may declare multiple exceptions with a comma-separated list.

public static int readByteFromFile() throws FileNotFoundException,
IOException {

try (InputStream in = new FileInputStream("a.txt")) {

System.out.println("File open");

return in.read();

}

}

Technically you do not need to declare FileNotFoundException, because it is a subclass
of IOException, but it is a good practice to do so.

Java SE 7 Programming 9 - 16

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Declaring Exceptions

You may declare that a method throws an exception instead of
handling it.

public static int readByteFromFile() throws IOException {

try (InputStream in = new FileInputStream("a.txt")) {

System.out.println("File open");

return in.read();

}

}

Notice the lack of catch
clauses. The try-with-
resources statement is

being used only to close
resources.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Handling Exceptions
Your application should always handle its exceptions. Adding a throws clause to a method
just delays the handling of the exception. In fact, an exception can be thrown repeatedly up
the call stack. A standard Java SE application must handle any exceptions before they are
thrown out of the main method; otherwise, you risk having your program terminate
abnormally. It is possible to declare that main throws an exception, but unless you are
designing programs to terminate in a nongraceful fashion, you should avoid doing so.

Java SE 7 Programming 9 - 17

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Handling Declared Exceptions

The exceptions that methods may throw must still be handled.
Declaring an exception just makes it someone else’s job to
handle them.

public static void main(String[] args) {

try {

int data = readByteFromFile();

} catch (IOException e) {

System.out.println(e.getMessage());

}

}

Method that declared
an exception

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Precise Rethrow

Java SE 7 supports rethrowing the precise exception type. The following example would not
compile with Java SE 6 because the catch clause receives an Exception, but the method
throws an IOException. For more about the new precise rethrow feature, see
http://download.oracle.com/javase/7/docs/technotes/guides/language/catch-
multiple.html#rethrow.

public static int readByteFromFile() throws IOException {

try {

InputStream in = new FileInputStream("a.txt");

System.out.println("File open");

return in.read();

} catch (Exception e) {

e.printStackTrace();

throw e;

}

}

Java SE 7 Programming 9 - 18

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Throwing Exceptions

You can rethrow an exception that has already been caught.
Note that there is both a throws clause and a throw
statement.

public static int readByteFromFile() throws IOException {

try (InputStream in = new FileInputStream("a.txt")) {

System.out.println("File open");

return in.read();

} catch (IOException e) {

e.printStackTrace();

throw e;

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Custom exceptions are never thrown by the standard Java class libraries. To take advantage
of a custom exception class, you must throw it yourself. For example:

throw new DAOException();

A custom exception class may override methods or add new functionality. The rules of
inheritance are the same, even though the parent class type is an exception.

Because exceptions capture information about a problem that has occurred, you may need to
add fields and methods depending on the type of information that needs to be captured. If a
string can capture all the necessary information, you can use the getMessage() method
that all Exception classes inherit from Throwable. Any Exception constructor that
receives a string will store it to be returned by getMessage().

Java SE 7 Programming 9 - 19

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Custom Exceptions

You can create custom exception classes by extending
Exception or one of its subclasses.

public class DAOException extends Exception {

public DAOException() {

super();

}

public DAOException(String message) {

super(message);

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c

Java SE 7 Programming 9 - 20

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Which keyword would you use to add a clause to a method
stating that the method might produce an exception?
a. throw

b. thrown

c. throws

d. assert

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Getting the Cause
The Throwable class contains a getCause() method that can be used to retrieve a
wrapped exception.

try {

//…

} catch (DAOException e) {

Throwable t = e.getCause();

}

Java SE 7 Programming 9 - 21

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Wrapper Exceptions

To hide the type of exception being generated without simply
swallowing the exception, use a wrapper exception.

public class DAOException extends Exception {

public DAOException(Throwable cause) {

super(cause);

}

public DAOException(String message, Throwable cause)
{

super(message, cause);

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

DAO Exceptions
A file-based DAO must deal with IOExceptions and a JDBC-based DAO must deal with
SQLExceptions. If these types of exceptions were thrown by a DAO, any clients would be
tied to an implementation instead of an abstraction. By modifying the DAO interface and
implementing classes to throw a wrapper exception (DAOException), you can preserve the
abstraction and let clients know when a DAO implementation encounters a problem.

Java SE 7 Programming 9 - 22

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Revisiting the DAO Pattern

The DAO pattern uses abstraction (an interface) to allow
implementation substitution. A file or database DAO must deal
with exceptions. A DAO implementation may use a wrapper
exception to preserve the abstraction and avoid swallowing
exceptions.

public Employee findById(int id) throws DAOException {

try {

return employeeArray[id];

} catch (ArrayIndexOutOfBoundsException e) {

throw new DAOException("Error finding employee in DAO", e);

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Why Use Assertions

You can use assertions to add code to your applications that ensures that the application is
executing as expected. Using assertions, you test for various conditions failing; if they do, you
terminate the application and display debugging-related information. Assertions should not be
used if the checks to be performed should always be executed because assertion checking
may be disabled.

Java SE 7 Programming 9 - 23

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Assertions

• Use assertions to document and verify the assumptions
and internal logic of a single method:
– Internal invariants

– Control flow invariants

– Postconditions and class invariants

• Inappropriate uses of assertions
Assertions can be disabled at run time; therefore:

– Do not use assertions to check the parameters of a public
method.

– Do not use methods that can cause side effects in the
assertion check.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The assert Statement

Assertions combine the exception-handling mechanism of Java with conditionally executed
code. The following is a pseudo-code example of the behavior of assertions:

if (AssertionsAreEnabled) {

if (condition == false) throw new AssertionError();

}

AssertionError is a subclass of Error and, therefore, falls in the category of unchecked
exceptions.

Java SE 7 Programming 9 - 24

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Assertion Syntax

• Syntax of an assertion is:

assert <boolean_expression> ;

assert <boolean_expression> : <detail_expression> ;

• If <boolean_expression> evaluates false, then an
AssertionError is thrown.

• The second argument is converted to a string and used as
descriptive text in the AssertionError message.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 9 - 25

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Internal Invariants

• The problem is:
1 if (x > 0) {

2 // do this

3 } else {

4 // do that

5 }

• The solution is:
1 if (x > 0) {

2 // do this

3 } else {

4 assert (x == 0);

5 // do that, unless x is negative

6 }

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 9 - 26

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Control Flow Invariants

Example:

1 switch (suit) {

2 case Suit.CLUBS: // ...

3 break;

4 case Suit.DIAMONDS: // ...

5 break;

6 case Suit.HEARTS: // ...

7 break;

8 case Suit.SPADES: // ...

9 break;

10 default: assert false : "Unknown playing card suit";

11 break;

12 }

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 9 - 27

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Postconditions and Class Invariants

Example:

1 public Object pop() {

2 int size = this.getElementCount();

3 if (size == 0) {

4 throw new RuntimeException("Attempt to pop from empty stack");

5 }

6

7 Object result = /* code to retrieve the popped element */ ;

8

9 // test the postcondition

10 assert (this.getElementCount() == size - 1);

11

12 return result;

13 }

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 9 - 28

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Controlling Runtime Evaluation of Assertions

• If assertion checking is disabled, the code runs as fast as if
the check were never there.

• Assertion checks are disabled by default. Enable
assertions with either of the following commands:
java -enableassertions MyProgram

java -ea MyProgram

• Assertion checking can be controlled on class, package,
and package hierarchy basis. See:
http://download.oracle.com/javase/7/docs/technotes/guide
s/language/assert.html

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

http://download.oracle.com/javase/7/docs/technotes/guides/language/assert.html

Answer: b

Java SE 7 Programming 9 - 29

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Assertions should be used to perform user-input validation?

a. True

b. False

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 9 - 30

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Define the purpose of Java exceptions
• Use the try and throw statements

• Use the catch, multi-catch, and finally clauses

• Autoclose resources with a try-with-resources statement

• Recognize common exception classes and categories

• Create custom exceptions and auto-closeable resources

• Test invariants using assertions

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this practice, you write code to deal with both checked and unchecked exceptions.

Java SE 7 Programming 9 - 31

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practice 9-1 Overview:
Catching Exceptions

This practice covers the following topics:
• Adding try-catch statements to a class

• Handling exceptions

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this practice, you update a DAO pattern implementation to use a custom wrapper
exception.

Java SE 7 Programming 9 - 32

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practice 9-2 Overview:
Extending Exception

This practice covers the following topics:
• Adding try-catch statements to a class

• Handling exceptions
• Extending the Exception class

• Creating a custom auto-closeable resource
• Using a try-with-resources statement

• Throwing exceptions using throw and throws

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Java I/O Fundamentals

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 10 - 2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

• Describe the basics of input and output in Java

• Read data from and write data to the console

• Use streams to read and write files

• Read and write objects by using serialization

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Some streams simply pass on data; others manipulate and transform the data in useful ways.

Java SE 7 Programming 10 - 3

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Java I/O Basics

The Java programming language provides a comprehensive
set of libraries to perform input/output (I/O) functions.

• Java defines an I/O channel as a stream.

• An I/O Stream represents an input source or an output
destination.

• A stream can represent many different kinds of sources
and destinations, including disk files, devices, other
programs, and memory arrays.

• Streams support many different kinds of data, including
simple bytes, primitive data types, localized characters,
and objects.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

No matter how they work internally, all streams present the same simple model to programs
that use them: A stream is a sequence of data.

A stream is a flow of data. A stream can come from a source or can be generated to a sink.

• A source stream initiates the flow of data, also called an input stream.

• A sink stream terminates the flow of data, also called an output stream.

Sources and sinks are both node streams. Types of node streams are files, memory, and
pipes between threads or processes.

Java SE 7 Programming 10 - 4

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

I/O Streams

• A program uses an input stream to read data from a
source, one item at a time.

• A program uses an output stream to write data to a
destination (sink), one item at time.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

An application developer typically uses I/O streams to read and write files, to read and write
information to and from some output device, such as the keyboard (standard in) and the
console (standard out). Finally, an application may need to use a socket to communicate with
another application on a remote system.

Java SE 7 Programming 10 - 5

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

I/O Application

Typically, there are three ways a developer may use input and
output:

Files and
directories

Console:
(standard-in,
standard-out)

Socket-based
sources

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java technology supports two types of data in streams: raw bytes and Unicode characters.
Typically, the term stream refers to byte streams and the terms reader and writer refer to
character streams.

More specifically, byte input streams are implemented by subclasses of the InputStream
class and byte output streams are implemented by subclasses of the OutputStream class.
Character input streams are implemented by subclasses of the Reader class and character
output streams are implemented by subclasses of the Writer class.

Byte streams are best applied to reading and writing or raw bytes (such as image files, audio
files, and objects). Specific subclasses provide methods to provide specific support for each
of these stream types.

Character streams are designed for reading characters (such as in files and other character-
based streams).

Java SE 7 Programming 10 - 6

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Data Within Streams

• Java technology supports two types of streams: character
and byte.

• Input and output of character data is handled by readers
and writers.

• Input and output of byte data is handled by input streams
and output streams:
– Normally, the term stream refers to a byte stream.

– The terms reader and writer refer to character streams.

Stream Byte Streams Character Streams

Source streams InputStream Reader

Sink streams OutputStream Writer

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

InputStream Methods

The read() method returns an int, which contains either a byte read from the stream, or a
-1, which indicates the end-of-file condition. The other two read methods read the stream into
a byte array and return the number of bytes read. The two int arguments in the third method
indicate a subrange in the target array that needs to be filled.

Note: For efficiency, always read data in the largest practical block, or use buffered streams.

When you have finished with a stream, close it. If you have a stack of streams, use filter
streams to close the stream at the top of the stack. This operation also closes the lower
streams.

Note: In Java SE 7, InputStream implements AutoCloseable, which means that if you
use an InputStream (or one of its subclasses) in a try-with-resources block, the stream is
automatically closed at the end of the try.

The available method reports the number of bytes that are immediately available to be
read from the stream. An actual read operation following this call might return more bytes.

The skip method discards the specified number of bytes from the stream.

Java SE 7 Programming 10 - 7

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Byte Stream InputStream Methods

• The three basic read methods are:
int read()

int read(byte[] buffer)

int read(byte[] buffer, int offset, int length)

• Other methods include:
void close(); // Close an open stream

int available(); // Number of bytes available

long skip(long n); // Discard n bytes from stream

boolean markSupported(); //

void mark(int readlimit); // Push-back operations

void reset(); //

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The markSupported(), mark(), and reset() methods perform push-back operations on
a stream, if supported by that stream. The markSupported() method returns true if the
mark() and reset() methods are operational for that particular stream. The mark(int)
method indicates that the current point in the stream should be noted and a buffer big enough
for at least the specified argument number of bytes should be allocated. The parameter of the
mark(int) method specifies the number of bytes that can be re-read by calling reset().
After subsequent read() operations, calling the reset() method returns the input stream to
the point you marked. If you read past the marked buffer, reset() has no meaning.

Java SE 7 Programming 10 - 8

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

OutputStream Methods

As with input, always try to write data in the largest practical block.

Java SE 7 Programming 10 - 9

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Byte Stream OutputStream Methods

• The three basic write methods are:
void write(int c)

void write(byte[] buffer)

void write(byte[] buffer, int offset, int length)

• Other methods include:
void close(); // Automatically closed in try-with-resources

void flush(); // Force a write to the stream

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

This example copies one file to another by using a byte array. Note that FileInputStream
and FileOutputStream are meant for streams of raw bytes like image files.

Note: The available() method, according to the Javadocs, reports "an estimate of the
number of remaining bytes that can be read (or skipped over) from this input stream without
blocking."

Java SE 7 Programming 10 - 10

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Byte Stream Example
1 import java.io.FileInputStream; import java.io.FileOutputStream;

2 import java.io.FileNotFoundException; import java.io.IOException;

3

4 public class ByteStreamCopyTest {

5 public static void main(String[] args) {

6 byte[] b = new byte[128]; int bLen = b.length;

7 // Example use of InputStream methods

8 try (FileInputStream fis = new FileInputStream (args[0]);

9 FileOutputStream fos = new FileOutputStream (args[1])) {

10 System.out.println ("Bytes available: " + fis.available());

11 int count = 0; int read = 0;

12 while ((read = fis.read(b)) != -1) {

13 if (read < bLen) fos.write(b, 0, read);

14 else fos.write(b);

15 count += read;

16 }

17 System.out.println ("Wrote: " + count);

18 } catch (FileNotFoundException f) {

19 System.out.println ("File not found: " + f);

20 } catch (IOException e) {

21 System.out.println ("IOException: " + e);

22 }

23 }

24 }

Note that you must keep track of
how many bytes are read into the
byte array each time.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Reader Methods

The first method returns an int, which contains either a Unicode character read from the
stream, or a -1, which indicates the end-of-file condition. The other two methods read into a
character array and return the number of bytes read. The two int arguments in the third
method indicate a subrange in the target array that needs to be filled.

Java SE 7 Programming 10 - 11

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Character Stream Reader Methods

• The three basic read methods are:
int read()

int read(char[] cbuf)

int read(char[] cbuf, int offset, int length)

• Other methods include:
void close()

boolean ready()

long skip(long n)

boolean markSupported()

void mark(int readAheadLimit)

void reset()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Writer Methods

The methods are analogous to the OutputStream methods.

Java SE 7 Programming 10 - 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Character Stream Writer Methods

• The basic write methods are:
void write(int c)

void write(char[] cbuf)

void write(char[] cbuf, int offset, int length)

void write(String string)

void write(String string, int offset, int length)

• Other methods include:
void close()

void flush()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Similar to the byte stream example, this application copies one file to another by using a
character array instead of a byte array. FileReader and FileWriter are classes designed
to read and write character streams, such as text files.

Java SE 7 Programming 10 - 13

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Character Stream Example
1 import java.io.FileReader; import java.io.FileWriter;

2 import java.io.IOException; import java.io.FileNotFoundException;

3

4 public class CharStreamCopyTest {

5 public static void main(String[] args) {

6 char[] c = new char[128]; int cLen = c.length;

7 // Example use of InputStream methods

8 try (FileReader fr = new FileReader(args[0]);

9 FileWriter fw = new FileWriter(args[1])) {

10 int count = 0;

11 int read = 0;

12 while ((read = fr.read(c)) != -1) {

13 if (read < cLen) fw.write(c, 0, read);

14 else fw.write(c);

15 count += read;

16 }

17 System.out.println("Wrote: " + count + " characters.");

18 } catch (FileNotFoundException f) {

19 System.out.println("File " + args[0] + " not found.");

20 } catch (IOException e) {

21 System.out.println("IOException: " + e);

22 }

23 }

24 }

Now, rather than a byte array, this
version uses a character array.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

A program rarely uses a single stream object. Instead, it chains a series of streams together
to process the data. The first figure in the slide demonstrates an example of input stream; in
this case, a file stream is buffered for efficiency and then converted into data (Java primitives)
items. The second figure demonstrates an example of output stream; in this case, data is
written, then buffered, and finally written to a file.

Java SE 7 Programming 10 - 14

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

I/O Stream Chaining

Input Stream Chain

Output Stream Chain

Data
Source

Program

File Input
Stream

Buffered Input
Stream Data Input

Stream

Data Output
Stream

Buffered Output
Stream

File Output
Stream

Program
Data
Sink

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Here is the copy application one more time. This version illustrates the use of a
BufferedReader chained to the FileReader that you saw before.

The flow of this program is the same as before. Instead of reading a character buffer, this
program reads a line at a time using the line variable to hold the String returned by the
readLine method, which provides greater efficiency. The reason is that each read request
made of a Reader causes a corresponding read request to be made of the underlying
character or byte stream. A BufferedReader reads characters from the stream into a buffer
(the size of the buffer can be set, but the default value is generally sufficient.)

Java SE 7 Programming 10 - 15

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Chained Streams Example

1 import java.io.BufferedReader; import java.io.BufferedWriter;

2 import java.io.FileReader; import java.io.FileWriter;

3 import java.io.FileNotFoundException; import java.io.IOException;

4

5 public class BufferedStreamCopyTest {

6 public static void main(String[] args) {

7 try (BufferedReader bufInput

8 = new BufferedReader(new FileReader(args[0]));

9 BufferedWriter bufOutput

10 = new BufferedWriter(new FileWriter(args[1]))) {

11 String line = "";

12 while ((line = bufInput.readLine()) != null) {

13 bufOutput.write(line);

14 bufOutput.newLine();

15 }

16 } catch (FileNotFoundException f) {

17 System.out.println("File not found: " + f);

18 } catch (IOException e) {

19 System.out.println("Exception: " + e);

20 }

21 }

22}

The character buffer replaced
by a String. Note that
readLine() uses the newline
character as a terminator.
Therefore, you must add that
back to the output file.

A FileReader chained to a
BufferedFileReader: This allows you
to use a method that reads a String.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

A processing stream performs a conversion on another stream. You choose the stream type
that you want based on the functionality that you need for the final stream.

Java SE 7 Programming 10 - 16

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Processing Streams

Functionality Character Streams Byte Streams

Buffering (Strings) BufferedReader
BufferedWriter

BufferedInputStream
BufferedOutputStream

Filtering FilterReader
FilterWriter

FilterInputStream
FilterOutputStream

Conversion (byte to
character)

InputStreamReader
OutputStreamWriter

Object serialization ObjectInputStream
ObjectOutputStream

Data conversion DataInputStream
DataOutputStream

Counting LineNumberReader LineNumberInputStream

Peeking ahead PushbackReader PushbackInputStream

Printing PrintWriter PrintStream

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Console I/O Using System
• System.out is the “standard” output stream. This stream is already open and ready to

accept output data. Typically, this stream corresponds to display output or another
output destination specified by the host environment or user.

• System.in is the “standard” input stream. This stream is already open and ready to
supply input data. Typically, this stream corresponds to keyboard input or another input
source specified by the host environment or user.

• System.err is the “standard” error output stream. This stream is already open and
ready to accept output data.
Typically, this stream corresponds to display output or another output destination
specified by the host environment or user. By convention, this output stream is used to
display error messages or other information that should come to the immediate attention
of a user even if the principal output stream, the value of the variable out, has been
redirected to a file or other destination that is typically not continuously monitored.

Java SE 7 Programming 10 - 17

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Console I/O

The System class in the java.lang package has three static
instance fields: out, in, and err.

• The System.out field is a static instance of a
PrintStream object that enables you to write to standard
output.

• The System.in field is a static instance of an
InputStream object that enables you to read from
standard input.

• The System.err field is a static instance of a
PrintStream object that enables you to write to standard
error.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Console object represents the character-based console associate with the current JVM.
Whether a virtual machine has a console depends on the underlying platform and also upon
the manner in which the virtual machine is invoked.

NetBeans, for example, does not have a console. To run the example in the project
SystemConsoleExample, use the command line.

Note: This example is just to illustrate the methods of the console class. You should ensure
that the lifetime of the fields userTyped and pwdTyped are as short as possible and pass
the received credentials to some type of authentication service. See the Java Authentication
and Authorization Service (JAAS) API for more information:
http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

Java SE 7 Programming 10 - 18

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

java.io.Console

In addition to the PrintStream objects, System can also
access an instance of the java.io.Console object:
10 Console cons = System.console();

11 if (cons != null) {

12 String userTyped; String pwdTyped;

13 do {

14 userTyped = cons.readLine("%s", "User name: ");

15 pwdTyped = new String(cons.readPassword("%s", "Password: "));

16 if (userTyped.equals("oracle") && pwdTyped.equals("tiger")) {

17 userValid = true;

18 } else {

19 System.out.println("Wrong user name/password. Try again.\n");

20 }

21 } while (!userValid);

22 }

• Note that you should pass the username and password to
an authentication process.

readPassword
does not echo the
characters typed
to the console.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Print Methods
Note that there is also a formatted print method, printf. You saw this method in the lesson
titled “String Processing.”

Java SE 7 Programming 10 - 19

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Writing to Standard Output

• The println and print methods are part of the
java.io.PrintStream class.

• The println methods print the argument and a newline
character (\n).

• The print methods print the argument without a newline
character.

• The print and println methods are overloaded for
most primitive types (boolean, char, int, long, float,
and double) and for char[], Object, and String.

• The print(Object) and println(Object) methods
call the toString method on the argument.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The try-with-resources statement on line 6 opens BufferedReader, which is chained to an
InputStreamReader, which is chained to the static standard console input System.in.

If the string read is equal to “xyz,” then the program exits. The purpose of the trim()
method on the String returned by in.readLine is to remove any whitespace characters.

Note: A null string is returned if an end of stream is reached (the result of a user pressing Ctrl-
C in Windows, for example) thus the test for null on line 13.

Java SE 7 Programming 10 - 20

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Reading from Standard Input

1 import java.io.BufferedReader;

2 import java.io.IOException;

3 import java.io.InputStreamReader;

4 public class KeyboardInput {

5 public static void main(String[] args) {

6 try (BufferedReader in =

7 new BufferedReader (new InputStreamReader (System.in))) {

8 String s = "";

9 // Read each input line and echo it to the screen.

10 while (s != null) {

11 System.out.print("Type xyz to exit: ");

12 s = in.readLine();

13 if (s != null) s = s.trim();

14 System.out.println("Read: " + s);

15 if (s.equals ("xyz")) System.exit(0);

16 }

17 } catch (IOException e) {

18 System.out.println ("Exception: " + e);

19 }

20}

Chain a buffered reader to
an input stream that takes
the console input.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this example, a file can be read in its entirety into a buffer, and then written out in a single
operation.

Channel I/O was introduced in the java.nio package in JDK 1.4.

Java SE 7 Programming 10 - 21

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Channel I/O

Introduced in JDK 1.4, a channel reads bytes and characters in
blocks, rather than one byte or character at a time.
1 import java.io.FileInputStream; import java.io.FileOutputStream;

2 import java.nio.channels.FileChannel; import java.nio.ByteBuffer;

3 import java.io.FileNotFoundException; import java.io.IOException;

4

5 public class ByteChannelCopyTest {

6 public static void main(String[] args) {

7 try (FileChannel fcIn = new FileInputStream(args[0]).getChannel();

8 FileChannel fcOut = new FileOutputStream(args[1]).getChannel()) {

9 ByteBuffer buff = ByteBuffer.allocate((int) fcIn.size());

10 fcIn.read(buff);

11 buff.position(0);

12 fcOut.write(buff);

13 } catch (FileNotFoundException f) {

14 System.out.println("File not found: " + f);

15 } catch (IOException e) {

16 System.out.println("IOException: " + e);

17 }

18 }

19 }

Create a buffer sized the same as
the file size, and then read and write
the file in a single operation.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this practice, you will write the code necessary to read a file name as an application
argument, and use the System console to read from standard input until a termination
character is typed in.

Java SE 7 Programming 10 - 22

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practice 10-1 Overview:
Writing a Simple Console I/O Application

This practice covers the following topics:

• Writing a main class that accepts a file name as an
argument.

• Using System console I/O to read a search string.

• Using stream chaining to use the appropriate method to
search for the string in the file and report the number of
occurrences.

• Continuing to read from the console until an exit sequence
is entered.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The java.io.Serializable interface defines no methods, and serves only as a marker to
indicate that the class should be considered for serialization.

Java SE 7 Programming 10 - 23

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Persistence

Saving data to some type of permanent storage is called
persistence. An object that is persistent-capable, can be stored
on disk (or any other storage device), or sent to another
machine to be stored there.

• A nonpersisted object exists only as long as the Java
Virtual Machine is running.

• Java serialization is the standard mechanism for saving an
object as a sequence of bytes that can later be rebuilt into
a copy of the object.

• To serialize an object of a specific class, the class must
implement the java.io.Serializable interface.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Object Graphs

Serialization traverses the object graph and writes that data to the file (or other output stream)
for each node of the graph.

Java SE 7 Programming 10 - 24

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Serialization and Object Graphs

• When an object is serialized, only the fields of the object
are preserved.

• When a field references an object, the fields of the
referenced object are also serialized, if that object's class
is also serializable.

• The tree of an object’s fields constitutes the object graph.

A

D

CB

D

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Transient

If a field containing an object reference is encountered that is not marked as serializable
(implement java.io.Serializable), a NotSerializableException is thrown and the
entire serialization operation fails. To serialize a graph containing fields that reference objects
that are not serializable, those fields must be marked using the keyword transient.

Java SE 7 Programming 10 - 25

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Transient Fields and Objects

• Some object classes are not serializable because they
represent transient operating system–specific information.

• If the object graph contains a nonserializable reference, a
NotSerializableException is thrown and the
serialization operation fails.

• Fields that should not be serialized or that do not need to
be serialized can be marked with the keyword
transient.

A

D

CB

D

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

When an object is deserialized, the values of static transient fields are set to the values
defined in the class declaration. The values of non-static fields are set to the default value of
their type. So in the example shown in the slide, the value of BASE will be 100, per the class
declaration. The value of non-static transient fields, inputFile and totalValue, are set to
their default values, null and 0, respectively.

Java SE 7 Programming 10 - 26

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Transient: Example

public class Portfolio implements Serializable {

public transient FileInputStream inputFile;

public static int BASE = 100;

private transient int totalValue = 10;

protected Stock[] stocks;

}

• The field access modifier has no effect on the data field
being serialized.

• The values stored in static fields are not serialized.

• When the object is deserialized, the values of static fields
are set to the values declared in the class. The value of
non-static transient fields is set to the default value for the
type.

static fields are not
serialized.

Serialization will include all of the
members of the stocks array.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 10 - 27

Note: The documentation for java.io.Serializable states the following:

If a serializable class does not explicitly declare a serialVersionUID, then the serialization run
time will calculate a default serialVersionUID value for that class based on various aspects of
the class, as described in the Java(TM) Object Serialization Specification. However, it is
strongly recommended that all serializable classes explicitly declare serialVersionUID values,
since the default serialVersionUID computation is highly sensitive to class details that may
vary depending on compiler implementations, and can thus result in unexpected
InvalidClassExceptions during deserialization. Therefore, to guarantee a consistent
serialVersionUID value across different java compiler implementations, a serializable class
must declare an explicit serialVersionUID value. It is also strongly advised that explicit
serialVersionUID declarations use the private modifier where possible, since such
declarations apply only to the immediately declaring class--serialVersionUID fields are not
useful as inherited members. Array classes cannot declare an explicit serialVersionUID, so
they always have the default computed value, but the requirement for matching
serialVersionUID values is waived for array classes.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Serial Version UID

• During serialization, a version number, serialVersionUID, is
used to associate the serialized output with the class used
in the serialization process.

• Upon deserialization, the serialVersionUID is checked to
verify that the classes loaded are compatible with the
object being deserialized.

• If the receiver of a serialized object has loaded classes for
that object with different serialVersionUID, deserialization
will result in an InvalidClassException.

• A serializable class can declare its own serialVersionUID
by explicitly declaring a field named serialVersionUID
as a static final and of type long:
private static long serialVersionUID = 42L;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 10 - 28

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Serialization Example

In this example, a Portfolio is made up of a set of Stocks.

• During serialization, the current price is not serialized, and
is therefore marked transient.

• However, we do want the current value of the stock to be
set to the current market price upon deserialization.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The SerializeStock class.

• Line 6 – 8: A FileOutputStream is chained to an ObjectOutputStream. This
allows the raw bytes generated by the ObjectOutputStream to be written to a file
through the writeObject method. This method walks the object’s graph and writes the
data contained in the non-transient and non-static fields as raw bytes.

• Line 12 – 14: To restore an object from a file, a FileInputStream is chained to an
ObjectInputStream. The raw bytes read by the readObject method restore an
Object containing the non-static and non-transient data fields. This Object must be
cast to expected type.

Java SE 7 Programming 10 - 29

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Writing and Reading an Object Stream

1 public static void main(String[] args) {

2 Stock s1 = new Stock("ORCL", 100, 32.50);

3 Stock s2 = new Stock("APPL", 100, 245);

4 Stock s3 = new Stock("GOGL", 100, 54.67);

5 Portfolio p = new Portfolio(s1, s2, s3);

6 try (FileOutputStream fos = new FileOutputStream(args[0]);

7 ObjectOutputStream out = new ObjectOutputStream(fos)) {

8 out.writeObject(p);

9 } catch (IOException i) {

10 System.out.println("Exception writing out Portfolio: " + i);

11 }

12 try (FileInputStream fis = new FileInputStream(args[0]);

13 ObjectInputStream in = new ObjectInputStream(fis)) {

14 Portfolio newP = (Portfolio)in.readObject();

15 } catch (ClassNotFoundException | IOException i) {

16 System.out.println("Exception reading in Portfolio: " + i);

17 }

The readObject method
restores the object from
the file stream.

The writeObject method writes the
object graph of p to the file stream.

Portfolio is the root
object.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The writeObject method is invoked on the object being serialized. If the object does not
contain this method, the defaultWriteObject method is invoked instead.

• This method must also be called once and only once from the object’s writeObject
method.

During deserialization, the readObject method is invoked on the object being deserialized
(if present in the class file of the object). The signature of the method is important.

private void readObject(ObjectInputStream ois) throws

ClassNotFoundException, IOException {

ois.defaultReadObject();

// Print the date this object was serialized

System.out.println ("Restored from date: " +

(java.util.Date)ois.readObject()));

}

Java SE 7 Programming 10 - 30

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Serialization Methods

An object being serialized (and deserialized) can control the
serialization of its own fields.
public class MyClass implements Serializable {

// Fields

private void writeObject(ObjectOutputStream oos) throws IOException {

oos.defaultWriteObject();

// Write/save additional fields

oos.writeObject(new java.util.Date());

}

}

• For example, in this class the current time is written into
the object graph.

• During deserialization a similar method is invoked:
private void readObject(ObjectInputStream ois) throws
ClassNotFoundException, IOException {}

defaultWriteObject called
to perform the serialization of
this classes fields.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In the Stock class, the readObject method is provided, to ensure that the stock’s
currPrice is set (by the setStockPrice method) after deserialization of the Stock object.

Note: The signature of the readObject method is critical for this method to be called during
deserialization.

Java SE 7 Programming 10 - 31

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

readObject Example

1 public class Stock implements Serializable {

2 private static final long serialVersionUID = 100L;

3 private String symbol;

4 private int shares;

5 private double purchasePrice;

6 private transient double currPrice;

7

8 public Stock(String symbol, int shares, double purchasePrice) {

9 this.symbol = symbol;

10 this.shares = shares;

11 this.purchasePrice = purchasePrice;

12 setStockPrice();

13 }

14

15 // This method is called post-serialization

16 private void readObject(ObjectInputStream ois)

17 throws IOException, ClassNotFoundException {

18 ois.defaultReadObject();

19 // perform other initialization

20 setStockPrice();

21 }

22 }

Stock currPrice is set by the
setStockPrice method during
creation of the Stock object, but
the constructor is not called during
deserialization.

Stock currPrice is set after the
other fields are deserialized

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 10 - 32

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Describe the basics of input and output in Java

• Read data from and write data to the console

• Use streams to read and write files

• Write and read objects by using serialization

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: a

Chaining one stream to another allows you to add functionality to the stream (for example,
converting data from bytes to characters, from characters to a buffered character stream, and
so on).

Java SE 7 Programming 10 - 33

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

The purpose of chaining streams together is to:

a. Allow the streams to add functionality

b. Change the direction of the stream

c. Modify the access of the stream

d. Meet the requirements of JDK 7

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c
a: Access modifiers have no effect on serialization of a field.

b: Although static fields are not serialized, this is not recommended, because marking a
field static also changes the field’s access.

d: final has no effect on the serialization of the field and also changes the meaning of
the field, making it immutable.

Java SE 7 Programming 10 - 34

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

To prevent the serialization of operating system–specific fields,
you should mark the field:
a. private

b. static

c. transient

d. final

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b
The field keyword is marked transient, and thus will not be serialized. Upon deserialization,
the value of the keyword is set to its default value of a String: null.

Java SE 7 Programming 10 - 35

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Given the following fragments:
public MyClass implements Serializable {

private String name;

private static int id = 10;

private transient String keyword;

public MyClass(String name, String keyword) {

this.name = name; this.keyword = keyword;

}

}

MyClass mc = new MyClass ("Zim", "xyzzy");

Assuming no other changes to the data, what is the value of name
and keyword fields after deserialization of the mc object instance?

a. Zim, ""

b. Zim, null

c. Zim, xyzzy

d. "", null

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c

The signature of the method must be:

private void readObject(ObjectInputStream ois) throws IOException,
ClassNotFoundException

in order to be invoked during serialization.

Java SE 7 Programming 10 - 36

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Given the following fragment:
1 public class MyClass implements Serializable {

2 private transient String keyword;

3 public void readObject(ObjectInputStream ois)

4 throws IOException, ClassNotFoundException {

5 ois.defaultReadObject();

6 String this.keyword = (String)ois.readObject();

7 }

8 }

What is required to properly deserialize an instance of
MyClass from the stream containing this object?

a. Make the field keyword static

b. Change the field access modifier to public

c. Make the readObject method private (line 3)

d. Use readString instead of readObject (line 6)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 10 - 37

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practice 10-2 Overview:
Serializing and Deserializing a ShoppingCart

This practice covers the following topics:
• Creating an application that serializes a ShoppingCart

object that is composed of an ArrayList of Item objects

• Using the transient keyword to prevent the serialization
of the ShoppingCart total. This will allow items to vary
their cost.

• Use the writeObject method to store today's date on
the serialized stream.

• Use the readObject method to
recalculate the total cost of the cart after
deserialization and print the date that the
object was serialized.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Java File I/O (NIO.2)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 11 - 2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:
• Use the Path interface to operate on file and directory

paths
• Use the Files class to check, delete, copy, or move a file

or directory
• Use Files class methods to read and write files using

channel I/O and stream I/O

• Read and change file and directory attributes

• Recursively access a directory tree

• Find a file by using the
PathMatcher class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

NIO API in JSR 51 established the basis for NIO in Java, focusing on buffers, channels, and
charsets. JSR 51 delivered the first piece of the scalable socket I/Os into the platform,
providing a non-blocking, multiplexed I/O API, thus allowing the development of highly
scalable servers without having to resort to native code.

For many developers, the most significant goal of JSR 203 is to address issues with
java.io.File by developing a new file system interface.

The new API:

• Works more consistently across platforms

• Makes it easier to write programs that gracefully handle the failure of file system
operations

• Provides more efficient access to a larger set of file attributes

• Allows developers of sophisticated applications to take advantage of platform-specific
features when absolutely necessary

• Allows support for non-native file systems, to be “plugged in” to the platform

Java SE 7 Programming 11 - 3

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

New File I/O API (NIO.2)

Improved File System Interface

Complete Socket-Channel Functionality

Scalable Asynchronous I/O

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Java I/O File API (java.io.File) presented challenges for developers.

• Many methods did not throw exceptions when they failed, so it was impossible to obtain
a useful error message.

• Several operations were missing (file copy, move, and so on).

• The rename method did not work consistently across platforms.

• There was no real support for symbolic links.

• More support for metadata was desired, such as file permissions, file owner, and other
security attributes.

• Accessing file metadata was inefficient—every call for metadata resulted in a system
call, which made the operations very inefficient.

• Many of the File methods did not scale. Requesting a large directory listing on a server
could result in a hang.

• It was not possible to write reliable code that could recursively walk a file tree and
respond appropriately if there were circular symbolic links.

Further, the overall I/O was not written to be extended. Developers had requested the ability
to develop their own file system implementations. For example, by keeping a pseudofile
system in memory, or by formatting files as zip files.

Java SE 7 Programming 11 - 4

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Limitations of java.io.File

Does not work well with symbolic links

Very limited set of

file attributes
Performance issues

Scalability issues

Very basic file system access functionality

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

File Systems
Prior to the NIO.2 implementation in JDK 7, files were represented by the java.io.File
class.

In NIO.2, instances of java.nio.file.Path objects are used to represent the relative or
absolute location of a file or directory.

File systems are hierarchical (tree) structures. File systems can have one or more root
directories. For example, typical Windows machines have at least two disk root nodes: C:\
and D:\.

Note that file systems may also have different characteristics for path separators, as shown in
the slide.

Java SE 7 Programming 11 - 5

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

File Systems, Paths, Files

In NIO.2, both files and directories are represented by a path,
which is the relative or absolute location of the file or directory.

root node:
/ (Solaris)

C:\ (Windows)

Admin

Documents and Settingslabs

student

finance.xls logfile.txt

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

A path can either be relative or absolute. An absolute path always contains the root element
and the complete directory list required to locate the file. For example,
/home/peter/statusReport is an absolute path. All the information needed to locate the
file is contained in the path string.

A relative path must be combined with another path in order to access a file. For example,
clarence/foo is a relative path. Without more information, a program cannot reliably locate
the clarence/foo directory in the file system.

Java SE 7 Programming 11 - 6

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Relative Path Versus Absolute Path

• A path is either relative or absolute.

• An absolute path always contains the root element and the
complete directory list required to locate the file.

• Example:

• A relative path must be combined with another path in
order to access a file.

• Example:

...

/home/peter/statusReport

...

...

clarence/foo

...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

File system objects are most typically directories or files. Everyone is familiar with these
objects. But some file systems also support the notion of symbolic links. A symbolic link is
also referred to as a “symlink” or a “soft link.”

A symbolic link is a special file that serves as a reference to another file. A symbolic link is
usually transparent to the user. Reading or writing to a symbolic link is the same as reading or
writing to any other file or directory.

In the slide’s diagram, logFile appears to the user to be a regular file, but it is actually a
symbolic link to dir/logs/homeLogFile. homeLogFile is the target of the link.

Java SE 7 Programming 11 - 7

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Symbolic Links

/ (Solaris root)

or

C:\ (Windows root)

home

clarence peter logFile (file)

foo

bar statusReport (file)

homeLogFile

(file)

logs

dir

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java NIO.2
A significant difference between NIO.2 and java.io.File is the architecture of access to
the file system. With the java.io.File class, the methods used to manipulate path
information are in the same class with methods used to read and write files and directories.

In NIO.2, the two concerns are separated. Paths are created and manipulated using the Path
interface, while operations on files and directories is the responsibility of the Files class,
which operates only on Path objects.

Finally, unlike java.io.File, Files class methods that operate directly on the file system,
throw an IOException (or a subclass). Subclasses provide details on what the cause of the
exception was.

Java SE 7 Programming 11 - 8

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Java NIO.2 Concepts

Prior to JDK 7, the java.io.File class was the entry point
for all file and directory operations. With NIO.2, there is a new
package and classes:
• java.nio.file.Path: Locates a file or a directory by

using a system-dependent path
• java.nio.file.Files: Using a Path, performs

operations on files and directories
• java.nio.file.FileSystem: Provides an interface to

a file system and a factory for creating a Path and other
objects that access a file system

• All the methods that access the file system throw
IOException or a subclass.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The entry point for the NIO.2 file and directory manipulation is an instance of the Path
interface. The provider (in this case, the default provider) creates an object that implements
this class and handles all the operations to be performed on a file or a directory in a file
system.

Path objects are immutable—once they are created, they cannot be changed.

Note that if you plan to use the default file system—that is, the file system that the JVM is
running on for the Path operations—the Paths utility is the shorter method. However, if you
wanted to perform Path operations on a file system other than the default, you would get an
instance of the file system that you wanted and use the first approach to build Path objects.

Note: The windows file system uses a backward slash by default. However, Windows can
accept both backward and forward slashes in applications (except the command shell).
Further, backward slashes in Java must be escaped. In order to represent a backward slash
in a string, you must type the backward slash twice. Because this looks ugly, and Windows
uses both forward and backward slashes, the examples shown in this course will use the
forward slash in strings.

Java SE 7 Programming 11 - 9

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Path Interface

The java.nio.file.Path interface provides the entry point
for the NIO.2 file and directory manipulation.
• To obtain a Path object, obtain an instance of the default

file system, and then invoke the getPath method:

FileSystem fs = FileSystems.getDefault();

Path p1 = fs.getPath ("D:\\labs\\resources\\myFile.txt");

• The java.nio.file package also provides a static final
helper class called Paths to perform getDefault:

Path p1 = Paths.get ("D:\\labs\\resources\\myFile.txt");

Path p2 = Paths.get ("D:", "labs", "resources", "myFile.txt");

Path p3 = Paths.get ("/temp/foo");

Path p4 = Paths.get (URI.create ("file:///~/somefile");

Escaped backward slash

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Path Objects Are Like String Objects

It is best to think of Path objects in the same way you think of String objects. Path objects
can be created from a single text string, or a set of components:

• A root component, that identifies the file system hierarchy

• A name element, farthest from the root element, that defines the file or directory the path
points to

• Additional elements may be present as well, separated by a special character or
delimiter that identify directory names that are part of the hierarchy

Path objects are immutable. Once created, operations on Path objects return new Path
objects.

Java SE 7 Programming 11 - 10

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Path Interface Features

The Path interface defines the methods used to locate a file or
a directory in a file system. These methods include:

• To access the components of a path:
– getFileName, getParent, getRoot, getNameCount

• To operate on a path:
– normalize, toUri, toAbsolutePath, subpath,

resolve, relativize

• To compare paths:
– startsWith, endsWith, equals

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Unlike the java.io.File class, files and directories are represented by instances of Path
objects in a system-dependent way.

The Path interface provides several methods for reporting information about the path:

• Path getFileName: The end point of this Path, returned as a Path object

• Path getParent: The parent path or null. Everything in Path up to the file name (file
or directory)

• int getNameCount: The number of name elements that make up this path

• Path getRoot: The root component of this Path

• boolean isAbsolute: true if this path contains a system-dependent root element.
Note: Because this example is being run on a Windows machine, the system-
dependent root element contains a drive letter and colon. On a UNIX-based OS,
isAbsolute returns true for any path that begins with a slash.

• Path toAbsolutePath: Returns a path representing the absolute path of this path

• java.net.URI toUri: returns an absolute URI.

Note: A Path object can be created for any path. The actual file or directory need not exist.

Java SE 7 Programming 11 - 11

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Path: Example

1 public class PathTest

2 public static void main(String[] args) {

3 Path p1 = Paths.get(args[0]);

4 System.out.format("getFileName: %s%n", p1.getFileName());

5 System.out.format("getParent: %s%n", p1.getParent());

6 System.out.format("getNameCount: %d%n", p1.getNameCount());

7 System.out.format("getRoot: %s%n", p1.getRoot());

8 System.out.format("isAbsolute: %b%n", p1.isAbsolute());

9 System.out.format("toAbsolutePath: %s%n", p1.toAbsolutePath());

10 System.out.format("toURI: %s%n", p1.toUri());

11 }

12 }

java PathTest D:/Temp/Foo/file1.txt

getFileName: file1.txt

getParent: D:\Temp\Foo

getNameCount: 3

getRoot: D:\

isAbsolute: true

toAbsolutePath: D:\Temp\Foo\file1.txt

toURI: file:///D:/Temp/Foo/file1.txt

Run on a Windows machine. Note that
except in a cmd shell, forward and
backward slashes are legal.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Many file systems use “.” notation to denote the current directory and “..” to denote the
parent directory. You might have a situation where a Path contains redundant directory
information. Perhaps a server is configured to save its log files in the “/dir/logs/.”
directory, and you want to delete the trailing “/.” notation from the path.

The normalize method removes any redundant elements, which includes any “.” or
“directory/..” occurrences. The slide examples would be normalized to
/home/clarence/foo.

It is important to note that normalize does not check the file system when it cleans up a
path. It is a purely syntactic operation. In the second example, if peter were a symbolic link,
removing peter/.. might result in a path that no longer locates the intended file.

Java SE 7 Programming 11 - 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Removing Redundancies from a Path

• Many file systems use “.” notation to denote the current
directory and “..” to denote the parent directory.

• The following examples both include redundancies:

• The normalize method removes any redundant
elements, which includes any “.” or “directory/..”
occurrences.

• Example:

/home/./clarence/foo

/home/peter/../clarence/foo

Path p = Paths.get("/home/peter/../clarence/foo");

Path normalizedPath = p.normalize();

/home/clarence/foo

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The element name closest to the root has index 0.

The element farthest from the root has index count-1.

Note: The returned Path object has the name elements that begin at beginIndex and
extend to the element at index endIndex-1.

Java SE 7 Programming 11 - 13

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Creating a Subpath

• A portion of a path can be obtained by creating a subpath
using the subpath method:
Path subpath(int beginIndex, int endIndex);

• The element returned by endIndex is one less that the
endIndex value.

• Example:

Path p1 = Paths.get ("D:/Temp/foo/bar");

Path p2 = p1.subpath (1, 3);

foo\bar

Temp = 0

foo = 1

bar = 2

Include the element at index 2.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The resolve method is used to combine paths. It accepts a partial path, which is a path that
does not include a root element, and that partial path is appended to the original path.

Java SE 7 Programming 11 - 14

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Joining Two Paths

• The resolve method is used to combine two paths.

• Example:

• Passing an absolute path to the resolve method returns
the passed-in path.

Path p1 = Paths.get("/home/clarence/foo");

p1.resolve("bar"); // Returns /home/clarence/foo/bar

Paths.get("foo").resolve("/home/clarence"); // Returns /home/clarence

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

A common requirement when you are writing file I/O code is the capability to construct a path
from one location in the file system to another location. You can accomplish this by using the
relativize method. This method constructs a path originating from the original path and
ending at the location specified by the passed-in path. The new path is relative to the original
path.

Java SE 7 Programming 11 - 15

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Creating a Path Between Two Paths

• The relativize method enables you to construct a path
from one location in the file system to another location.

• The method constructs a path originating from the original
path and ending at the location specified by the passed-in
path.

• The new path is relative to the original path.

• Example:
Path p1 = Paths.get("peter");

Path p2 = Paths.get("clarence");

Path p1Top2 = p1.relativize(p2); // Result is ../clarence

Path p2Top1 = p2.relativize(p1); // Result is ../peter

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The java.nio.file package and the Path interface in particular are “link aware.” Every
Path method either detects what to do when a symbolic link is encountered, or it provides an
option enabling you to configure the behavior when a symbolic link is encountered.

Some file systems also support hard links. Hard links are more restrictive than symbolic links,
as follows:

• The target of the link must exist.

• Hard links are generally not allowed on directories.

• Hard links are not allowed to cross partitions or volumes. Therefore, they cannot exist
across file systems.

• A hard link looks, and behaves, like a regular file, so they can be hard to find.

• A hard link is, for all intents and purposes, the same entity as the original file. They have
the same file permissions, time stamps, and so on. All attributes are identical.

Because of these restrictions, hard links are not used as often as symbolic links, but the Path
methods work seamlessly with hard links.

Java SE 7 Programming 11 - 16

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Working with Links

• Path interface is “link aware.”

• Every Path method either:

– Detects what to do when a symbolic link is encountered, or

– Provides an option enabling you to configure the behavior
when a symbolic link is encountered

createSymbolicLink(Path, Path, FileAttribute<?>)

createLink(Path, Path) isSymbolicLink(Path) readSymbolicLink(Path)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: a

Java SE 7 Programming 11 - 17

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Given a Path object with the following path:

/export/home/heimer/../williams/./documents

What Path method would remove the redundant elements?

a. normalize

b. relativize

c. resolve

d. toAbsolutePath

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b

Java SE 7 Programming 11 - 18

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Given the following path:
Path p = Paths.get
("/home/export/tom/documents/coursefiles/JDK7");

and the statement:
Path sub = p.subPath (x, y);

What values for x and y will produce a Path that contains
documents/coursefiles?

a. x = 3, y = 4

b. x = 3, y = 5

c. x = 4, y = 5

d. x = 4, y = 6

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: d

Java SE 7 Programming 11 - 19

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Given this code fragment:
Path p1 = Paths.get("D:/temp/foo/");

Path p2 = Paths.get("../bar/documents");

Path p3 = p1.resolve(p2).normalize();

System.out.println(p3);

What is the result?

a. Compiler error

b. IOException
c. D:\temp\foo\documents

d. D:\temp\bar\documents

e. D:\temp\foo\..\bar\documents

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The java.nio.file.Files class is the primary entry point for operations on Path
objects.

Static methods in this class read, write, and manipulate files and directories represented by
Path objects.

The Files class is also link aware—methods detect symbolic links in Path objects and
automatically manage links or provide options for dealing with links.

Java SE 7 Programming 11 - 20

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

File Operations

Checking a File or Directory

Deleting a File or Directory

Copying a File or Directory

Moving a File or Directory

Managing Metadata

Reading, Writing, and Creating Files

Random Access Files

Creating and Reading Directories

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Recall that Path objects may point to files or directories that do not exist. The exists() and
notExists() methods are used to determine whether the Path points to a legitimate file or
directory, and the particulars of that file or directory.

When testing for the existence of a file, there are three outcomes possible:

• The file is verified to exist.

• The file is verified to not exist.

• The file’s status is unknown. This result can occur when the program does not have
access to the file.

Note: !Files.exists(path) is not equivalent to Files.notExists(path). If both
exists and notExists return false, the existence of the file or directory cannot be
determined. For example, in Windows, it is possible to achieve this by requesting the status of
an off-line drive, such as a CD-ROM drive.

Java SE 7 Programming 11 - 21

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Checking a File or Directory

A Path object represents the concept of a file or a directory
location. Before you can access a file or directory, you should
first access the file system to determine whether it exists using
the following Files methods:

• exists(Path p, LinkOption... option)
Tests to see whether a file exists. By default, symbolic
links are followed.

• notExists(Path p, LinkOption... option)
Tests to see whether a file does not exist. By default,
symbolic links are followed.

• Example:
Path p = Paths.get(args[0]);

System.out.format("Path %s exists: %b%n", p,

Files.exists(p, LinkOption.NOFOLLOW_LINKS));

Optional argument

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The result of any of these tests is immediately outdated once the operation completes.
According to the documentation: “Note that result of this method is immediately outdated.
There is no guarantee that a subsequent attempt to open the file for writing will succeed (or
even that it will access the same file). Care should be taken when using this method in
security-sensitive applications.”

Java SE 7 Programming 11 - 22

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Checking a File or Directory

To verify that a file can be accessed, the Files class provides
the following boolean methods.

• isReadable(Path)

• isWritable(Path)

• isExecutable(Path)

Note that these tests are not atomic with respect to other file
system operations. Therefore, the results of these tests may
not be reliable once the methods complete.
• The isSameFile (Path, Path) method tests to see

whether two paths point to the same file. This is
particularly useful in file systems that support symbolic
links.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Files class also has methods to create temporary files and directories, hard links, and
symbolic links.

Java SE 7 Programming 11 - 23

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Creating Files and Directories

Files and directories can be created using one of the following
methods:

Files.createFile (Path dir);

Files.createDirectory (Path dir);

• The createDirectories method can be used to create
directories that do not exist, from top to bottom:

Files.createDirectories(Paths.get("D:/Temp/foo/bar/example"));

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The delete(Path) method deletes the file or throws an exception if the deletion fails. For
example, if the file does not exist, a NoSuchFileException is thrown.

The deleteIfExists(Path) method also deletes the file, but if the file does not exist, no
exception is thrown. Failing silently is useful when you have multiple threads deleting files and
you do not want to throw an exception just because one thread did so first.

Java SE 7 Programming 11 - 24

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Deleting a File or Directory

You can delete files, directories, or links. The Files class
provides two methods:
• delete(Path)

• deleteIfExists(Path)
//...

Files.delete(path);

//...

//...

Files.deleteIfExists(Path)

//...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

You can copy a file or directory by using the copy(Path, Path, CopyOption...)
method. The copy fails if the target file exists, unless the REPLACE_EXISTING option is
specified.

Directories can be copied. However, files inside the directory are not copied, so the new
directory is empty even when the original directory contains files.

When copying a symbolic link, the target of the link is copied. If you want to copy the link
itself, and not the contents of the link, specify either the NOFOLLOW_LINKS or
REPLACE_EXISTING option.

The following StandardCopyOption and LinkOption enums are supported:

• REPLACE_EXISTING: Performs the copy even when the target file already exists. If the
target is a symbolic link, the link itself is copied (and not the target of the link). If the
target is a non-empty directory, the copy fails with the
FileAlreadyExistsException exception.

• COPY_ATTRIBUTES: Copies the file attributes associated with the file to the target file.
The exact file attributes supported are file system– and platform-dependent, but last-
modified-time is supported across platforms and is copied to the target file.

• NOFOLLOW_LINKS: Indicates that symbolic links should not be followed. If the file to be
copied is a symbolic link, the link is copied (and not the target of the link).

Java SE 7 Programming 11 - 25

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Copying a File or Directory

• You can copy a file or directory by using the copy(Path,
Path, CopyOption...) method.

• When directories are copied, the files inside the directory
are not copied.

• Example:

//...

copy(Path, Path, CopyOption...)

//...

REPLACE_EXISTING
COPY_ATTRIBUTES
NOFOLLOW_LINKS

StandardCopyOption parameters

import static java.nio.file.StandardCopyOption.*;

//...

Files.copy(source, target, REPLACE_EXISTING, NOFOLLOW_LINKS);

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The alternative to the stream to path copy is a path to stream method. This method may be
used to write a file to a socket, or some other type of stream.

Java SE 7 Programming 11 - 26

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Copying Between a Stream and Path

You may also want to be able to copy (or write) from a Stream
to file or from a file to a Stream. The Files class provides two
methods to make this easy:
copy(InputStream source, Path target, CopyOption... options)

copy(Path source, OutputStream out)

• An interesting use of the first method is copying from a web
page and saving to a file:

Path path = Paths.get("D:/Temp/oracle.html");

URI u = URI.create("http://www.oracle.com/");

try (InputStream in = u.toURL().openStream()) {

Files.copy(in, path, StandardCopyOption.REPLACE_EXISTING);

} catch (final MalformedURLException | IOException e) {

System.out.println("Exception: " + e);

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Guidelines for moves:

• If the target path is a directory and that directory is empty, the move succeeds if
REPLACE_EXISTING is set.

• If the target directory does not exist, the move succeeds. Essentially, this is a rename of
the directory.

• If the target directory exists and is not empty, a DirectoryNotEmptyException is
thrown.

• If the source is a file and the target is a directory that exists, and REPLACE_EXISTING
is set, the move will rename the file to the intended directory name.

To move a directory containing files to another directory, essentially you need to recursively
copy the contents of the directory, and then delete the old directory.

You can also perform the move as an atomic file operation using ATOMIC_MOVE.

• If the file system does not support an atomic move, an exception is thrown. With an
ATOMIC_MOVE you can move a file into a directory and be guaranteed that any process
watching the directory accesses a complete file.

Java SE 7 Programming 11 - 27

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Moving a File or Directory

• You can move a file or directory by using the move(Path,
Path, CopyOption...) method.

• Moving a directory will not move the contents of the
directory.

• Example:

//...

move(Path, Path, CopyOption...)

//...

REPLACE_EXISTING

ATOMIC_MOVE

StandardCopyOption parameters

import static java.nio.file.StandardCopyOption.*;

//...

Files.move(source, target, REPLACE_EXISTING);

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Files class provides a method to return a DirectoryStream, which can be used to
iterate over all the files and directories from any Path (root) directory.

DirectoryIteratorException is thrown if there is an I/O error while iterating over the
entries in the specified directory.

PatternSyntaxException is thrown when the pattern provided (second argument of the
method) is invalid.

Java SE 7 Programming 11 - 28

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Listing a Directory’s Contents

The DirectoryStream class provides a mechanism to iterate
over all the entries in a directory.
1 Path dir = Paths.get("D:/Temp");

2 // DirectoryStream is a stream, so use try-with-resources

3 // or explicitly close it when finished

4 try (DirectoryStream<Path> stream =

5 Files.newDirectoryStream(dir, "*.zip")) {

6 for (Path file : stream) {

7 System.out.println(file.getFileName());

8 }

9 } catch (PatternSyntaxException | DirectoryIteratorException |

10 IOException x) {

11 System.err.println(x);

12 }

• DirectoryStream scales to support very large
directories.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

If you have a small file and you would like to read its entire contents in one pass, you can use
the readAllBytes(Path) or readAllLines(Path, Charset) method. These methods
take care of most of the work, such as opening and closing the stream, but because they
bring the entire file into memory at once, they are not intended for handling large files.

You can use one of the write methods to write bytes, or lines, to a file.
• write(Path, byte[], OpenOption...)

• write(Path, Iterable<? extends CharSequence>, Charset,
OpenOption...)

Java SE 7 Programming 11 - 29

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Reading/Writing All Bytes or Lines from a File

• The readAllBytes or readAllLines method reads
entire contents of the file in one pass.

• Example:

• Use write method(s) to write bytes, or lines, to a file.

Path source = ...;

List<String> lines;

Charset cs = Charset.defaultCharset();

lines = Files.readAllLines(file, cs);

Path target = ...;

Files.write(target, lines, cs, CREATE, TRUNCATE_EXISTING, WRITE);

StandardOpenOption enums.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

NIO.2 supports channel and buffered stream I/O.

While stream I/O reads a character at a time, channel I/O reads a buffer at a time. The
ByteChannel interface provides basic read and write functionality. A
SeekableByteChannel is a ByteChannel that has the capability to maintain a position in
the channel and query the file for its size.

The capability to move to different points in the file and then read from or write to that location
makes random access of a file possible.

There are two methods for reading and writing channel I/O:
• newByteChannel(Path, OpenOption...)

• newByteChannel(Path, Set<? extends OpenOption>,
FileAttribute<?>...)

Note: The newByteChannel methods return an instance of a SeekableByteChannel.
With a default file system, you can cast this seekable byte channel to a FileChannel
providing access to more advanced features such as mapping a region of the file directly into
memory for faster access, locking a region of the file so other processes cannot access it, or
reading and writing bytes from an absolute position without affecting the channel’s current
position. Refer to the “I/O Fundamentals” lesson for an example of using FileChannel.

Java SE 7 Programming 11 - 30

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Channels and ByteBuffers

• Stream I/O reads a character at a time, while channel I/O
reads a buffer at a time.

• The ByteChannel interface provides basic read and write
functionality.

• A SeekableByteChannel is a ByteChannel that has
the capability to maintain a position in the channel and to
change that position.

• The two methods for reading and writing channel I/O are:

• The capability to move to different points in the file and
then read from or write to that location makes random
access of a file possible.

newByteChannel(Path, OpenOption...)

newByteChannel(Path, Set<? extends OpenOption>, FileAttribute<?>...)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Random access files permit non-sequential, or random, access to a file’s contents. To access
a file randomly, you open the file, seek a particular location, and read from or write to that file.

This functionality is possible with the SeekableByteChannel interface. The
SeekableByteChannel interface extends channel I/O with the notion of a current position.
Methods enable you to set or query the position, and you can then read the data from, or write
the data to, that location. The API consists of a few, easy to use, methods:

• position(): Returns the channel’s current position

• position(long): Sets the channel’s position

• read(ByteBuffer): Reads bytes into the buffer from the channel

• write(ByteBuffer): Writes bytes from the buffer to the channel

• truncate(long): Truncates the file (or other entity) connected to the channel

Java SE 7 Programming 11 - 31

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Random Access Files

• Random access files permit non-sequential, or random,
access to a file’s contents.

• To access a file randomly, open the file, seek a particular
location, and read from or write to that file.

• Random access functionality is enabled by the
SeekableByteChannel interface.

position()

position(long)

read(ByteBuffer)

write(ByteBuffer)

truncate(long)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Reading a File by Using Buffered Stream I/O

The newBufferedReader(Path, Charset) method opens a file for reading, returning a
BufferedReader that can be used to read text from a file in an efficient manner.

Java SE 7 Programming 11 - 32

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Buffered I/O Methods for Text Files

• The newBufferedReader method opens a file for
reading.

• The newBufferedWriter method writes to a file using a
BufferedWriter.

//...

BufferedReader reader = Files.newBufferedReader(file, charset);

line = reader.readLine();

//...

BufferedWriter writer = Files.newBufferedWriter(file, charset);

writer.write(s, 0, s.length());

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 11 - 33

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Byte Streams

• NIO.2 also supports methods to open byte streams.

• To create a file, append to a file, or write to a file, use the
newOutputStream method.

InputStream in = Files.newInputStream(file);

BufferedReader reader = new BufferedReader(new InputStreamReader(in));

line = reader.readLine();

import static java.nio.file.StandardOpenOption.*;

//...

Path logfile = ...;

String s = ...;

byte data[] = s.getBytes();

OutputStream out =

new BufferedOutputStream(file.newOutputStream(CREATE, APPEND);

out.write(data, 0, data.length);

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

If a program needs multiple file attributes around the same time, it can be inefficient to use
methods that retrieve a single attribute. Repeatedly accessing the file system to retrieve a
single attribute can adversely affect performance. For this reason, the Files class provides
two readAttributes methods to fetch a file’s attributes in one bulk operation.

• readAttributes(Path, String, LinkOption...)

• readAttributes(Path, Class<A>, LinkOption...)

Java SE 7 Programming 11 - 34

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Managing Metadata

Method Explanation

size Returns the size of the specified file in bytes

isDirectory
Returns true if the specified Path locates a file that is a
directory

isRegularFile
Returns true if the specified Path locates a file that is a
regular file

isSymbolicLink
Returns true if the specified Path locates a file that is a
symbolic link

isHidden
Returns true if the specified Path locates a file that is
considered hidden by the file system

getLastModifiedTime
Returns or sets the specified file’s last modified time

setLastModifiedTime

getAttribute
Returns or sets the value of a file attribute

setAttribute

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The setAttribute types (for DOS) extend the BasicFileAttributeView and view the
standard four bits on file systems that support DOS attributes:

• dos:hidden

• dos:readonly

• dos:system

• dos:archive

Other supported attribute views include:

• BasicFileAttributeView: Provides a set of basic attributes supported by all file
system implementations

• PosixFileAttributeView: Extends the BasicFileAttributeView with attributes
that support the POSIX family of standards, such as UNIX

• FileOwnerAttributeView: Is supported by any file system implementation that
supports the concept of a file owner

• AclFileAttributeView: Supports reading or updating a file’s Access Control List
(ACL). The NFSv4 ACL model is supported.

• UserDefinedFileAttributeView: Enables support of user-defined metadata

Java SE 7 Programming 11 - 35

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

File Attributes (DOS)

• File attributes can be read from a file or directory in a
single call:

DosFileAttributes attrs =

Files.readAttributes (path, DosFileAttributes.class);

• DOS file systems can modify attributes after file creation:

Files.createFile (file);

Files.setAttribute (file, "dos:hidden", true);

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The code fragment in the slide illustrates the use of the DosFileAttributes class. In the
one call to the readAttributes method, the attributes of the file (or directory) are returned.

Java SE 7 Programming 11 - 36

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

DOS File Attributes: Example

DosFileAttributes attrs = null;

Path file = ...;

try { attrs =

Files.readAttributes(file, DosFileAttributes.class);

} catch (IOException e) { ///... }

FileTime creation = attrs.creationTime();

FileTime modified = attrs.lastModifiedTime();

FileTime lastAccess = attrs.lastAccessTime();

if (!attrs.isDirectory()) {

long size = attrs.size();

}

// DosFileAttributes adds these to BasicFileAttributes

boolean archive = attrs.isArchive();

boolean hidden = attrs.isHidden();

boolean readOnly = attrs.isReadOnly();

boolean systemFile = attrs.isSystem();

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

File systems that implement the Portable Operating System Interface (POSIX) standard can
create files and directories with their initial permissions set. This solves a common problem in
I/O programming where a file is created. Permissions on that file may be changed before the
next execution to set permissions.

Permissions can be set only for POSIX-compliant file systems, such as MacOS, Linux, and
Solaris. Windows (DOS-based) is not POSIX compliant. DOS-based files and directories do
not have permissions, but rather file attributes.

Note: You can determine whether or not a file system supports POSIX programmatically by
looking for what file attribute views are supported. For example:

boolean unixFS = false;

Set<String> views =

FileSystems.getDefault().supportedFileAttributeViews();

for (String s : views) {

if (s.equals("posix")) unixFS = true;

}

Java SE 7 Programming 11 - 37

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

POSIX Permissions

With NIO.2, you can create files and directories on POSIX file
systems with their initial permissions set.
1 Path p = Paths.get(args[0]);

2 Set<PosixFilePermission> perms =

3 PosixFilePermissions.fromString("rwxr-x---");

4 FileAttribute<Set<PosixFilePermission>> attrs =

5 PosixFilePermissions.asFileAttribute(perms);

6 try {

7 Files.createFile(p, attrs);

8 } catch (FileAlreadyExistsException f) {

9 System.out.println("FileAlreadyExists" + f);

10 } catch (IOException i) {

11 System.out.println("IOException:" + i);

12 }

Create a file in the Path p
with optional attributes.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: e

Java SE 7 Programming 11 - 38

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Given the following fragment:
Path p1 = Paths.get("/export/home/peter");

Path p2 = Paths.get("/export/home/peter2");

Files.move(p1, p2, StandardCopyOption.REPLACE_EXISTING);

If the peter2 directory does not exist, and the peter directory
is populated with subfolders and files, what is the result?
a. DirectoryNotEmptyException

b. NotDirectoryException

a. Directory peter2 is created.

b. Directory peter is copied to peter2.

c. Directory peter2 is created and populated with files and
directories from peter.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: a, d

Java SE 7 Programming 11 - 39

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Given this fragment:
Path source = Paths.get(args[0]);

Path target = Paths.get(args[1]);

Files.copy(source, target);

Assuming source and target are not directories, how can
you prevent this copy operation from generating
FileAlreadyExistsException?

a. Delete the target file before the copy.

b. Use the move method instead.

c. Use the copyExisting method instead.

d. Add the REPLACE_EXISTING option to the method.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c

Java SE 7 Programming 11 - 40

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Given this fragment:
Path source = Paths.get("/export/home/mcginn/HelloWorld.java");

Path newdir = Paths.get("/export/home/heimer");

Files.copy(source, newdir.resolve(source.getFileName());

Assuming there are no exceptions, what is the result?
a. The contents of mcginn are copied to heimer.

b. HelloWorld.java is copied to /export/home.

c. HelloWorld.java is coped to /export/home/heimer.

d. The contents of heimer are copied to mcginn.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 11 - 41

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practice 11-1 Overview:
Writing a File Merge Application

In this practice, use the Path interface and Files class to
open a letter template form, and substitute the name in the
template with a name from a file containing a list of names.
• Use the Path interface to create a new file name for the

custom letter.
• Use the Files class to read all of the strings from both

files into List objects.

• Use the Matcher and Pattern classes to search for the
token to replace in the template.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The FileVisitor interface includes methods that are invoked as each node in a file tree is
visited:

• preVisitDirectory: Invoked on a directory before the entries in the directory are
visited

• visitFile: Invoked for a file in a directory

• postVisitDirectory: Invoked after all the entries in a directory and their
descendants have been visited

• visitFileFailed: Invoked for a file that could not be visited

The return result from each of the called methods determines actions taken after a node is
reached (pre or post). These are enumerated in the FileVisitResult class:

• CONTINUE: Continue to the next node

• SKIP_SIBLINGS: Continue without visiting the siblings of this file or directory

• SKIP_SUBTREE: Continue without visiting the entries in this directory

• TERMINATE

Note: There is also a class, SimpleFileVisitor, that implements each method in
FileVisitor with a return type of FileVisitResult.CONTINUE or rethrows any
IOException. If you plan on using only some of the methods in the FileVisitor interface,
this class is easier to extend and override just the methods that you need.

Java SE 7 Programming 11 - 42

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Recursive Operations

The Files class provides a method to walk the file tree for
recursive operations, such as copies and deletes.
• walkFileTree (Path start, FileVisitor<T>)

• Example:
public class PrintTree implements FileVisitor<Path> {

public FileVisitResult preVisitDirectory(Path, BasicFileAttributes){}

public FileVisitResult postVisitDirectory(Path, BasicFileAttributes){}

public FileVisitResult visitFile(Path, BasicFileAttributes){}

public FileVisitResult visitFileFailed(Path, BasicFileAttributes){}

}

public class WalkFileTreeExample {

public printFileTree(Path p) {

Files.walkFileTree(p, new PrintTree());

}

}

The file tree is recursively explored.
Methods defined by PrintTree
are invoked as directories and files
are reached in the tree. Each
method is passed the current path
as the first argument of the method.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

FileVisitor

Starting at the first directory node, and at every subdirectory encountered, the
preVisitDirectory(Path, BasicFileAttributes) method is invoked on the class
passed to the walkFileTree method.

Assuming that the return type from the invocation of preVisitDirectory() returns
FileVisitResult.CONTINUE, the next node is explored.

Note: The file tree traversal is depth-first with the given FileVisitor invoked for each file
encountered. File tree traversal completes when all accessible files in the tree have been
visited, or a visit method returns a result of TERMINATE. Where a visit method terminates due
an IOException, an uncaught error, or a runtime exception, the traversal is terminated and
the error or exception is propagated to the caller of this method.

Java SE 7 Programming 11 - 43

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

FileVisitor Method Order

start

file

dir

link

file

file

preVisitDirectory()

dir

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

When a file is encountered in the tree the walkFileTree method attempts to read its
BasicFileAttributes. If the file is not a directory, the visitFile method is invoked with
the file attributes. If the file attributes cannot be read, due to an I/O exception, the
visitFileFailed method is invoked with the I/O exception.

.

Java SE 7 Programming 11 - 44

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

start

file

dir

link

file

file

dir

FileVisitor Method Order

visitFileFailed()

visitFile()

preVisitDirectory()

visitFile()

preVisitDirectory()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

After reaching all the children in a node, the postVisitDirectory method is invoked on
each of the directories.

Note: The progression illustrated here assumes that FileVisitResult return type is
CONTINUE for each of the FileVisitor methods.

Java SE 7 Programming 11 - 45

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

start

file

dir

link

file

file

dir

FileVisitor Method Order

postVisitDirectory()

postVisitDirectory()

postVisitDirectory()

postVisitDirectory()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this example, the PrintTree class implements each of the methods in FileVisitor and
prints out the type, name, and size of the directory and file at each node. Using the diagram
shown in the slide, the resulting output (on Windows) is shown below:

preVisitDirectory: Directory: D:\Test (0 bytes)

preVisitDirectory: Directory: D:\Test\bar (0 bytes)

postVisitDirectory: Directory: D:\Test\bar

visitFile: Regular file: D:\Test\file1 (328 bytes)

preVisitDirectory: Directory: D:\Test\foo (0 bytes)

preVisitDirectory: Directory: D:\Test\foo\a (0 bytes)

visitFile: Regular file: D:\Test\foo\a\file2 (22 bytes)

postVisitDirectory: Directory: D:\Test\foo\a

visitFile: Regular file: D:\Test\foo\file3 (12 bytes)

postVisitDirectory: Directory: D:\Test\foo

postVisitDirectory: Directory: D:\Test

The complete code for this example is in the examples/WalkFileTreeExample project.

Java SE 7 Programming 11 - 46

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Example: WalkFileTreeExample

Path path = Paths.get("D:/Test");

try {

Files.walkFileTree(path, new PrintTree());

} catch (IOException e) {

System.out.println("Exception: " + e);

}

D:\Test

file1

a

bar

file3

file2

foo

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 11 - 47

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Finding Files

To find a file, typically, you would search a directory. You could
use a search tool, or a command, such as:
dir /s *.java

• This command will recursively search the directory tree,
starting from where you are for all files that contain the
.java extension.

The java.nio.file.PathMatcher interface includes a
match method to determine whether a Path object matches a
specified search string.
• Each file system implementation provides a PathMatcher

that can be retrieved by using the FileSystems factory:

PathMatcher matcher = FileSystems.getDefault().getPathMatcher
(String syntaxAndPattern);

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The following rules are used to interpret glob patterns:

• The * character matches zero or more characters of a name component without
crossing directory boundaries.

• The ** characters matches zero or more characters crossing directory boundaries.

• The ? character matches exactly one character of a name component.

• The backslash character (\) is used to escape characters that would otherwise be
interpreted as special characters. The expression \\ matches a single backslash and
\{ matches a left brace for example.

• The [] characters are a bracket expression that matches a single character of a name
component out of a set of characters. For example, [abc] matches a, b, or c. The
hyphen (-) may be used to specify a range, so [a-z] specifies a range that matches
from a through z (inclusive). These forms can be mixed so [abce-g] matches a, b, c,
e, f, or g. If the character after the [is a !, then it is used for negation, so [!a-c]
matches any character except a, b, or c.

Java SE 7 Programming 11 - 48

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

PathMatcher Syntax and Pattern

• The syntaxAndPattern string is of the form:
syntax:pattern

Where syntax can be “glob” and “regex”.

• The glob syntax is similar to regular expressions, but simpler:

Pattern Example Matches

*.java A path that represents a file name ending in .java

. Matches file names containing a dot

*.{java,class} Matches file names ending with .java or .class

foo.? Matches file names starting with foo. and a single
character extension

C:* Matches C:\foo and C:\bar on the Windows platform
(Note that the backslash is escaped. As a string literal in the
Java Language, the pattern would be C:*.)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

• Within a bracket expression, the *, ? and \ characters match themselves. The (-)
character matches itself if it is the first character within the brackets, or the first character
after the ! if negating.

• The { } characters are a group of subpatterns, where the group matches if any
subpattern in the group matches. The "," character is used to separate the subpatterns.
Groups cannot be nested.

• Leading period/dot characters in a file name are treated as regular characters in match
operations. For example, the “*” glob pattern matches file name .login. The
Files.isHidden(java.nio.file.Path)method may be used to test whether a
file is considered hidden.

• All other characters match themselves in an implementation-dependent manner. This
includes characters representing any name separators.

• The matching of root components is highly implementation-dependent and is not
specified.

When the syntax is “regex,” the pattern component is a regular expression as defined by the
Pattern class.

For both the glob and regex syntaxes, the matching details, such as whether the matching is
case-sensitive, are implementation-dependent and, therefore, not specified.

Java SE 7 Programming 11 - 49

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this code fragment in the slide (the complete example is in the examples directory), two
arguments are passed to the main.

The first argument is tested to see whether it is a directory. The second argument is used to
create a PathMatcher instance with a regular expression using the FileSystems factory.

Finder is a class that implements the FileVisitor interface, so that it can be passed to a
walkFileTree method. This class is used to call the match method on each of the files
visited in the tree.

Java SE 7 Programming 11 - 50

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

PathMatcher: Example

1 public static void main(String[] args) {

2 // ... check for two arguments

3 Path root = Paths.get(args[0]);

4 // ... check that the first argument is a directory

5 PathMatcher matcher =

6 FileSystems.getDefault().getPathMatcher("glob:" + args[1]);

7 // Finder is class that implements FileVisitor

8 Finder finder = new Finder(root, matcher);

9 try {

10 Files.walkFileTree(root, finder);

11 } catch (IOException e) {

12 System.out.println("Exception: " + e);

13 }

14 finder.done();

15 }

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The slide shows a portion of the Finder class. This class is used to walk the tree and look for
matches between file and the file reached by the visitFile method.

Java SE 7 Programming 11 - 51

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Finder Class

1 public class Finder extends SimpleFileVisitor<Path> {

2 private Path file;

3 private PathMatcher matcher;

4 private int numMatches;

5 // ... constructor stores Path and PathMatcher objects

6 private void find(Path file) {

7 Path name = file.getFileName();

8 if (name != null && matcher.matches(name)) {

9 numMatches++;

10 System.out.println(file);

11 }

12 }

13 @Override

14 public FileVisitResult visitFile(Path file,

15 BasicFileAttributes attrs) {

16 find(file);

17 return CONTINUE;

18 }

19 //...

20 }

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The slide shows examples output from the DiskUsageExample project and
WatchDirExample project.

Java SE 7 Programming 11 - 52

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Other Useful NIO.2 Classes

• The FileStore class is useful for providing usage
information about a file system, such as the total, usable,
and allocated disk space.

Filesystem kbytes used avail

System (C:) 209748988 72247420 137501568

Data (D:) 81847292 429488 81417804

• An instance of the WatchService interface can be used
to report changes to registered Path objects.
WatchService can be used to identify when files are
added, deleted, or modified in a directory.

ENTRY_CREATE: D:\test\New Text Document.txt

ENTRY_CREATE: D:\test\Foo.txt

ENTRY_MODIFY: D:\test\Foo.txt

ENTRY_MODIFY: D:\test\Foo.txt

ENTRY_DELETE: D:\test\Foo.txt

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Legacy java.io.File code

One of the benefits of the NIO.2 package is that you can enable legacy code to take
advantage of the new API.

Java SE 7 Programming 11 - 53

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Moving to NIO.2

A method was added to the java.io.File class for JDK 7 to
provide forward compatibility with NIO.2.
Path path = file.toPath();

• This enables you to take advantage of NIO.2 without
having to rewrite a lot of code.

• Further, you could replace your existing code to improve
future maintenance—for example, replace
file.delete(); with:

Path path = file.toPath();

Files.delete (path);

• Conversely, the Path interface provides a method to
construct a java.io.File object:

File file = path.toFile();

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 11 - 54

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use the Path interface to operate on file and directory

paths
• Use the Files class to check, delete, copy, or move a file

or directory
• Use Files class methods to read and write files using

channel I/O and stream I/O

• Read and change file and directory attributes

• Recursively access a directory tree

• Find a file by using the
PathMatcher class

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: a

Java SE 7 Programming 11 - 55

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

To copy, move, or open a file or directory using NIO.2, you
must first create an instance of:
a. Path

b. Files

c. FileSystem

d. Channel

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b, c
You should use visitFile to delete a file discovered in the directory.
postVisitDirectory can then delete the empty directory.

Java SE 7 Programming 11 - 56

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Given any starting directory path, which FileVisitor
method(s) would you use to delete a file tree?
a. preVisitDirectory()

b. postVisitDirectory()

c. visitFile()

d. visitDirectory()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: a
preVisitDirectory is called only once per directory, prior to visiting that node.

Java SE 7 Programming 11 - 57

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Given an application where you want to count the depth of a file
tree (how many levels of directories), which FileVisitor method
should you use?
a. preVisitDirectory()

b. postVisitDirectory()

c. visitFile()

d. visitDirectory()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 11 - 58

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practice 11-2 Overview:
Recursive Copy

This practice covers creating a class by implementing
FileVisitor to recursively copy one directory tree to another
location.

• Allow the user of your application to decide to overwrite an
existing directory or not.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 11 - 59

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

(Optional) Practice 11-3 Overview:
Using PathMatcher to Recursively Delete

This practice covers the following topics:
• Creating a class by implementing FileVisitor to delete

a file by using a wildcard (That is, delete all the text files by
using *.txt.)

• (Optional) Running the WatchDirExample in the
examples directory while deleting files from a directory (or
using the recursive copy application) to watch for changes

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Threading

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 12 - 2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

• Describe operating system task scheduling

• Define a thread

• Create threads

• Manage threads

• Synchronize threads accessing shared data

• Identify potential threading problems

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Preemptive Multitasking

Modern computers often have more tasks to execute than CPUs. Each task is given an
amount of time (called a time slice) during which it can execute on a CPU. A time slice is
usually measured in milliseconds. When the time slice has elapsed, the task is forcefully
removed from the CPU and another task is given a chance to execute.

Java SE 7 Programming 12 - 3

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Task Scheduling

Modern operating systems use preemptive multitasking to
allocate CPU time to applications. There are two types of tasks
that can be scheduled for execution:

• Processes: A process is an area of memory that contains
both code and data. A process has a thread of execution
that is scheduled to receive CPU time slices.

• Thread: A thread is a scheduled execution of a process.
Concurrent threads are possible. All threads for a process
share the same data memory but may be following
different paths through a code section.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Multithreaded Servers

Even if you do not write code to create new threads of execution, your code might be run in a
multithreaded environment. You must be aware of how threads work and how to write
thread-safe code. When creating code to run inside of another piece of software (such as a
middleware or application server), you must read the products documentation to discover
whether threads will be created automatically. For instance, in a Java EE application server,
there is a component called a Servlet that is used to handle HTTP requests. Servlets must
always be thread-safe because the server starts a new thread for each HTTP request.

Java SE 7 Programming 12 - 4

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Why Threading Matters

To execute a program as quickly as possible, you must avoid
performance bottlenecks. Some of these bottlenecks are:

• Resource Contention: Two or more tasks waiting for
exclusive use of a resource

• Blocking I/O operations: Doing nothing while waiting for
disk or network data transfers

• Underutilization of CPUs: A single-threaded application
uses only a single CPU

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 12 - 5

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The Thread Class

The Thread class is used to create and start threads. Code to
be executed by a thread must be placed in a class, which does
either of the following:
• Extends the Thread class

– Simpler code

• Implements the Runnable interface
– More flexible
– extends is still free.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The run Method

The code to be executed in a new thread of execution should be placed in a run method. You
should avoid calling the run method directly. Calling the run method does not start a new
thread and the effect would be no different than calling any other method.

Java SE 7 Programming 12 - 6

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Extending Thread

Extend java.lang.Thread and override the run method:

public class ExampleThread extends Thread {

@Override

public void run() {

for(int i = 0; i < 100; i++) {

System.out.println("i:" + i);

}

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The start Method

The start method is used to begin executing a thread. The Java Virtual Machine will call the
Thread’s run method. Exactly when the run method begins executing is beyond your
control. A Thread can be started only once.

Java SE 7 Programming 12 - 7

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Starting a Thread

After creating a new Thread, it must be started by calling the
Thread’s start method:

public static void main(String[] args) {

ExampleThread t1 = new ExampleThread();

t1.start();

}

Schedules the run
method to be called

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The run Method

Just as when extending Thread, calling the run method does not start a new thread. The
benefit of implementing Runnable is that you may still extend a class of your choosing.

Java SE 7 Programming 12 - 8

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Implementing Runnable

Implement java.lang.Runnable and implement the run
method:

public class ExampleRunnable implements Runnable {

@Override

public void run() {

for(int i = 0; i < 100; i++) {

System.out.println("i:" + i);

}

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The start Method

The Thread’s start method is used to begin executing a thread. After the thread is started,
the Java Virtual Machine will invoke the run method in the Thread’s associated Runnable.

Java SE 7 Programming 12 - 9

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Executing Runnable Instances

After creating a new Runnable, it must be passed to a
Thread constructor. The Thread’s start method begins
execution:

public static void main(String[] args) {

ExampleRunnable r1 = new ExampleRunnable();

Thread t1 = new Thread(r1);

t1.start();

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 12 - 10

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

A Runnable with Shared Data

Static and instance fields are potentially shared by threads.

public class ExampleRunnable implements Runnable {

private int i;

@Override

public void run() {

for(i = 0; i < 100; i++) {

System.out.println("i:" + i);

}

}

}

Potentially shared
variable

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Multiple Threads with One Runnable

It is possible to pass a single Runnable instance to multiple Thread instances. There are
only as many Runnable instances as you create. Multiple Thread instances share the
Runnable instance’s fields.

Static fields can also be concurrently accessed by multiple threads.

Java SE 7 Programming 12 - 11

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

One Runnable: Multiple Threads

An object that is referenced by multiple threads can lead to
instance fields being concurrently accessed.

public static void main(String[] args) {

ExampleRunnable r1 = new ExampleRunnable();

Thread t1 = new Thread(r1);

t1.start();

Thread t2 = new Thread(r1);

t2.start();

}

A single Runnable
instance

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b

Java SE 7 Programming 12 - 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Creating a new thread requires the use of:
a. java.lang.Runnable

b. java.lang.Thread

c. java.util.concurrent.Callable

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Debugging Threads

Debugging threads can be difficult because the frequency and duration of time each thread is
allocated can vary for many reasons including:

• Thread scheduling is handled by an operating system and operating systems may use
different scheduling algorithms

• Machines have different counts and speeds of CPUs

• Other applications may be placing load on the system

This is one of those cases where an application may seem to function perfectly while in
development, but strange problems might manifest after it is in production because of
scheduling variations. It is your responsibility to safeguard access to shared variables.

Java SE 7 Programming 12 - 13

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Problems with Shared Data

Shared data must be accessed cautiously. Instance and static
fields:

• Are created in an area of memory known as heap space

• Can potentially be shared by any thread

• Might be changed concurrently by multiple threads
– There are no compiler or IDE warnings.

– “Safely” accessing shared fields is your responsibility.

The preceding slides might produce the following:
i:0,i:0,i:1,i:2,i:3,i:4,i:5,i:6,i:7,i:8,i:9,i:10,i:12,i:11 ...

Out of sequenceZero produced twice

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Shared Thread-Safe Data
Any shared data that is immutable, such as String objects or final fields, are thread-safe
because they can only be read and not written.

Java SE 7 Programming 12 - 14

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Nonshared Data

Some variable types are never shared. The following types are
always thread-safe:

• Local variables

• Method parameters

• Exception handler parameters

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: a, c

Java SE 7 Programming 12 - 15

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Variables are thread-safe if they are:
a. local

b. static

c. final

d. private

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Inconsistent Behavior

One possible problem with two threads incrementing the same field is that a lost update might
occur. Imagine if both threads read a value of 41 from a field, increment the value by one, and
then write their results back to the field. Both threads will have done an increment but the
resulting value is only 42. Depending on how the Java Virtual Machine is implemented and
the type of physical CPU being used, you may never or rarely see this behavior. However,
you must always assume that it could happen.

If you have a long value of 0x0000_0000_ffff_ffff and increment it by 1, the result
should be 0x0000_0001_0000_0000. However, because it is legal for a 64-bit field to be
accessed using two separate 32-bit writes, there could temporarily be a value of
0x0000_0001_ffff_ffff or even 0x0000_0000_0000_0000 depending on which bits
are modified first. If a second thread was allowed to read a 64-bit field while it was being
modified by another thread, an incorrect value could be retrieved.

Java SE 7 Programming 12 - 16

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Atomic Operations

Atomic operations function as a single operation. A single
statement in the Java language is not always atomic.
• i++;

– Creates a temporary copy of the value in i

– Increments the temporary copy
– Writes the new value back to i

• l = 0xffff_ffff_ffff_ffff;

– 64-bit variables might be accessed using two separate 32-bit
operations.

What inconsistencies might two threads incrementing the same
field encounter?

What if that field is long?

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Synchronizing Actions

Every thread has a working memory in which it keeps its own working copy of variables that it
must use or assign. As the thread executes a program, it operates on these working copies.
There are several actions that will synchronize a thread’s working memory with main memory:

• A volatile read or write of a variable (the volatile keyword)

• Locking or unlocking a monitor (the synchronized keyword)

• The first and last action of a thread

• Actions that start a thread or detect that a thread has terminated

Java SE 7 Programming 12 - 17

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Out-of-Order Execution

• Operations performed in one thread may not appear to
execute in order if you observe the results from another
thread.
– Code optimization may result in out-of-order operation.

– Threads operate on cached copies of shared variables.

• To ensure consistent behavior in your threads, you must
synchronize their actions.
– You need a way to state that an action happens before

another.

– You need a way to flush changes to shared variables back to
main memory.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: a, b, c, d

Java SE 7 Programming 12 - 18

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Which of the following cause a thread to synchronize
variables?

a. Reading a volatile field
b. Calling isAlive() on a thread

c. Starting a new thread

d. Completing a synchronized code block

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Because the manipulation of volatile fields may not be atomic, it is not sufficient to make
anything other than reads and writes of single variables thread-safe. A good example of using
volatile is shown in the examples in the following slides about how to stop a thread.

Java SE 7 Programming 12 - 19

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The volatile Keyword

A field may have the volatile modifier applied to it:

public volatile int i;

• Reading or writing a volatile field will cause a thread to
synchronize its working memory with main memory.

• volatile does not mean atomic.
– If i is volatile, i++ is still not a thread-safe operation.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 12 - 20

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Stopping a Thread

A thread stops by completing its run method.

public class ExampleRunnable implements Runnable {

public volatile boolean timeToQuit = false;

@Override

public void run() {

System.out.println("Thread started");

while(!timeToQuit) {

// ...

}

System.out.println("Thread finishing");

}

}

Shared volatile variable

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Main Thread
The main method in a Java SE application is executed in a thread, sometimes called the
main thread, which is automatically created by the JVM. Just with any thread, when the main
thread writes to the timeToQuit field, it is important that the write will be seen by the t1
thread. If the timeToQuit field was not volatile, there is no guarantee that the write
would be seen immediately. Note that if you forget to declare a similar field as volatile, an
application might function perfectly for you but occasionally fail to quit for someone else.

Java SE 7 Programming 12 - 21

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Stopping a Thread

public static void main(String[] args) {

ExampleRunnable r1 = new ExampleRunnable();

Thread t1 = new Thread(r1);

t1.start();

// ...

r1.timeToQuit = true;

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 12 - 22

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The synchronized Keyword

The synchronized keyword is used to create thread-safe
code blocks. A synchronized code block:

• Causes a thread to write all of its changes to main memory
when the end of the block is reached
– Similar to volatile

• Is used to group blocks of code for exclusive execution
– Threads block until they can get exclusive access

– Solves the atomic problem

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Synchronized Method Behavior
In the example in the slide, you can call only one method at a time in a ShoppingCart object
because all its methods are synchronized. In this example, the synchronization is per
ShoppingCart. Two ShoppingCart instances could be used concurrently.

If the methods were not synchronized, calling removeItem while printCart is iterating
through the Item collection might result in unpredictable behavior. An iterator may support
fail-fast behavior. A fail-fast iterator will throw a
java.util.ConcurrentModificationException, a subclass of RuntimeException,
if the iterator’s collection is modified while being used.

Java SE 7 Programming 12 - 23

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

synchronized Methods

public class ShoppingCart {

private List<Item> cart = new ArrayList<>();

public synchronized void addItem(Item item) {

cart.add(item);

}

public synchronized void removeItem(int index) {

cart.remove(index);

}

public synchronized void printCart() {

Iterator<Item> ii = cart.iterator();

while(ii.hasNext()) {

Item i = ii.next();

System.out.println("Item:" + i.getDescription());

}

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Synchronization Bottlenecks

Synchronization in multithreaded applications ensures reliable behavior. Because
synchronized blocks and methods are used to restrict a section of code to a single thread,
you are potentially creating performance bottlenecks. synchronized blocks can be used in
place of synchronized methods to reduce the number of lines that are exclusive to a single
thread.

Use synchronization as little as possible for performance, but as much as needed to
guarantee reliability.

Java SE 7 Programming 12 - 24

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

synchronized Blocks

public void printCart() {

StringBuilder sb = new StringBuilder();

synchronized (this) {

Iterator<Item> ii = cart.iterator();

while (ii.hasNext()) {

Item i = ii.next();

sb.append("Item:");

sb.append(i.getDescription());

sb.append("\n");

}

}

System.out.println(sb.toString());

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Nested synchronized Blocks

A thread can lock multiple monitors simultaneously by using nested synchronized blocks.

Java SE 7 Programming 12 - 25

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Object Monitor Locking

Each object in Java is associated with a monitor, which a
thread can lock or unlock.
• synchronized methods use the monitor for the this

object.
• static synchronized methods use the classes’

monitor.
• synchronized blocks must specify which object’s

monitor to lock or unlock.

synchronized (this) { }

• synchronized blocks can be nested.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Interruption Does Not Mean Stop

When a thread is interrupted, it is up to you to decide what action to take. That action could be
to return from the run method or to continue executing code.

Java SE 7 Programming 12 - 26

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Detecting Interruption

Interrupting a thread is another possible way to request that a
thread stop executing.

public class ExampleRunnable implements Runnable {

@Override

public void run() {

System.out.println("Thread started");

while(!Thread.interrupted()) {

// ...

}

System.out.println("Thread finishing");

}

}

static Thread method

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Benefits of Interruption
Using the interruption features of Thread is a convenient way to stop a thread. In addition to
eliminating the need for you to write your own thread-stopping logic, it also can interrupt a
thread that is blocked. For more information, see
http://download.java.net/jdk7/docs/api/java/lang/Thread.html#interrupt().

Java SE 7 Programming 12 - 27

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Interrupting a Thread

Every thread has an interrupt() and isInterrupted()
method.

public static void main(String[] args) {

ExampleRunnable r1 = new ExampleRunnable();

Thread t1 = new Thread(r1);

t1.start();

// ...

t1.interrupt();

}

Interrupt a thread

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

How Long Will a Thread Sleep?

A request of Thread.sleep(4000) means that a thread wants to stop executing for 4
seconds. After that 4 seconds elapse, the thread is scheduled for execution again. This does
not mean that the thread start up exactly 4 seconds after the call to sleep(), instead it
means the thread will begin executing 4 seconds or longer after it began to sleep. The exact
sleep duration is affected by machine hardware, operating system, and system load.

Sleep Interrupted

If you call interrupt() on a thread that is sleeping, the call to sleep() will throw an
InterruptedException which must be handled. How you should handle the exception
depends on how your application is designed. If calling interrupt() is just meant to
interrupt the sleep() call and not the execution of a thread, then you might swallow the
exception. Other cases might require you to rethrow the exception or return from a run()
method.

Java SE 7 Programming 12 - 28

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Thread.sleep()

A Thread may pause execution for a duration of time.

long start = System.currentTimeMillis();

try {

Thread.sleep(4000);

} catch (InterruptedException ex) {

// What to do?

}

long time = System.currentTimeMillis() - start;

System.out.println("Slept for " + time + " ms");

interrupt() called while sleeping

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b

Java SE 7 Programming 12 - 29

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

A call to Thread.sleep(4000) will cause the executing
thread to always sleep for exactly 4 seconds

a. True

b. False

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Learning More

Daemon threads are background threads that are less important than normal threads.
Because the main thread is not a daemon thread, all threads that you create will also be
nondaemon threads. Any nondaemon thread that is still running (alive) will keep the JVM from
quitting even if your main method has returned. If a thread should not prevent the JVM from
quitting, then it should be set as a daemon thread. There are more multithreading concepts
and methods to learn about. For additional reading material, see
http://download.oracle.com/javase/tutorial/essential/concurrency/further.html.

Java SE 7 Programming 12 - 30

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Additional Thread Methods

• There are many more Thread and threading-related
methods:
– setName(String), getName(), and getId()

– isAlive(): Has a thread finished?

– isDaemon() and setDaemon(boolean): The JVM can
quit while daemon threads are running.

– join(): A current thread waits for another thread to finish.

– Thread.currentThread(): Runnable instances can
retrieve the Thread instance currently executing.

• The Object class also has methods related to threading:
– wait(), notify(), and notifyAll(): Threads may go to

sleep for an undetermined amount of time, waking only when
the Object they waited on receives a wakeup notification.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Deprecation

Classes, interfaces, methods, variables, and other components of any Java library may be
marked as deprecated. Deprecated components might cause unpredictable behavior or
simply might have not followed proper naming conventions. You should avoid using any
deprecated APIs in your applications. Deprecated APIs are still included in libraries to ensure
backwards compatibility, but could potentially be removed in future versions of Java.

For more information about why the methods mentioned above are deprecated, refer to
docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html, which is available online
at http://download.oracle.com/javase/7/ or as part of the downloadable JDK documentation.

Java SE 7 Programming 12 - 31

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Methods to Avoid

Some Thread methods should be avoided:

• setPriority(int) and getPriority()

– Might not have any impact or may cause problems

• The following methods are deprecated and should never
be used:
– destroy()

– resume()

– suspend()

– stop()

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Starvation and livelock are much less common a problem than deadlock, but are still
problems that every designer of concurrent software is likely to encounter.

Starvation

Starvation describes a situation where a thread is unable to gain regular access to shared
resources and is unable to make progress. This happens when shared resources are made
unavailable for long periods by “greedy” threads. For example, suppose an object provides a
synchronized method that often takes a long time to return. If one thread invokes this method
frequently, other threads that also need frequent synchronized access to the same object will
often be blocked.

Livelock

A thread often acts in response to the action of another thread. If the other thread’s action is
also a response to the action of another thread, livelock may result. As with deadlock,
livelocked threads are unable to make further progress. However, the threads are not
blocked; they are simply too busy responding to each other to resume work.

Java SE 7 Programming 12 - 32

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Deadlock

Deadlock results when two or more threads are blocked
forever, waiting for each other.

synchronized(obj1) {

synchronized(obj2) {

}

}

synchronized(obj2) {

synchronized(obj1) {

}

}

Thread 1 pauses after locking
obj1’s monitor.

Thread 2 pauses after locking
obj2’s monitor.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 12 - 33

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Describe operating system task scheduling

• Define a thread

• Create threads

• Manage threads

• Synchronize threads accessing shared data

• Identify potential threading problems

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this practice, you write a class that is added to an existing multithreaded application. You
must make your class thread-safe.

Java SE 7 Programming 12 - 34

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practice 12-1 Overview:
Synchronizing Access to Shared Data

This practice covers the following topics:

• Printing thread IDs
• Using Thread.sleep()

• Synchronizing a block of code

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this practice, you create, start, and interrupt basic threads by using the Runnable
interface.

Java SE 7 Programming 12 - 35

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practice 12-2 Overview:
Implementing a Multithreaded Program

This practice covers the following topics:
• Implementing Runnable

• Starting a Thread

• Checking the status of a Thread

• Interrupting a Thread

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Concurrency

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

• Use atomic variables
• Use a ReentrantReadWriteLock

• Use the java.util.concurrent collections

• Describe the synchronizer classes
• Use an ExecutorService to concurrently execute tasks

• Apply the Fork-Join framework

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 3

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The java.util.concurrent Package

Java 5 introduced the java.util.concurrent package,
which contains classes that are useful in concurrent
programming. Features include:

• Concurrent collections

• Synchronization and locking alternatives

• Thread pools
– Fixed and dynamic thread count pools available

– Parallel divide and conquer (Fork-Join) new in Java 7

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Non-Blocking Operation

On CPU architectures that support a native compare and set operation there will be no need
for locking when executing the example shown. Other architectures may require some form of
internal locking.

Java SE 7 Programming 13 - 4

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The java.util.concurrent.atomic Package

The java.util.concurrent.atomic package contains
classes that support lock-free thread-safe programming on
single variables

AtomicInteger ai = new AtomicInteger(5);

if(ai.compareAndSet(5, 42)) {

System.out.println("Replaced 5 with 42");

}
An atomic operation ensures that

the current value is 5 and then
sets it to 42.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Multi-Reader, Single Writer Lock
One of the features of the java.util.concurrent.locks package is an implementation
of a multi-reader, single writer lock. A thread may not have or obtain a read lock while a write
lock is in use. Multiple threads can concurrently acquire the read lock but only one thread may
acquire the write lock. The lock is reentrant; a thread that has already acquired the write lock
may call additional methods that also obtain the write lock without a fear of blocking.

Java SE 7 Programming 13 - 5

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The java.util.concurrent.locks Package

The java.util.concurrent.locks package is a
framework for locking and waiting for conditions that is distinct
from built-in synchronization and monitors.
public class ShoppingCart {

private final ReentrantReadWriteLock rwl =

new ReentrantReadWriteLock();

public void addItem(Object o) {

rwl.writeLock().lock();

// modify shopping cart

rwl.writeLock().unlock();

}

A single writer, multi-
reader lock

Write Lock

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Multiple Concurrent Reads

In the example, all methods that are determined to be read-only can add the necessary code
to lock and unlock a read lock. A ReentrantReadWriteLock allows concurrent execution
of both a single read-only method and of multiple read-only methods.

Java SE 7 Programming 13 - 6

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

java.util.concurrent.locks

public String getSummary() {

String s = "";

rwl.readLock().lock();

// read cart, modify s

rwl.readLock().unlock();

return s;

}

public double getTotal() {

// another read-only method

}

}

All read-only methods can
concurrently execute.

Read Lock

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Concurrent Collections
The ConcurrentLinkedQueue class supplies an efficient scalable thread-safe nonblocking
FIFO queue. Five implementations in java.util.concurrent support the extended
BlockingQueue interface, which defines blocking versions of put and take:
LinkedBlockingQueue, ArrayBlockingQueue, SynchronousQueue,
PriorityBlockingQueue, and DelayQueue.

Besides queues, this package supplies Collection implementations designed for use in
multithreaded contexts: ConcurrentHashMap, ConcurrentSkipListMap,
ConcurrentSkipListSet, CopyOnWriteArrayList, and CopyOnWriteArraySet.
When many threads are expected to access a given collection, a ConcurrentHashMap is
normally preferable to a synchronized HashMap, and a ConcurrentSkipListMap is
normally preferable to a synchronized TreeMap. A CopyOnWriteArrayList is preferable
to a synchronized ArrayList when the expected number of reads and traversals greatly
outnumber the number of updates to a list.

Java SE 7 Programming 13 - 7

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Thread-Safe Collections

The java.util collections are not thread-safe. To use
collections in a thread-safe fashion:

• Use synchronized code blocks for all access to a collection
if writes are performed

• Create a synchronized wrapper using library methods,
such as
java.util.Collections.synchronizedList(List<T>)

• Use the java.util.concurrent collections

Note: Just because a Collection is made thread-safe, this
does not make its elements thread-safe.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b

Java SE 7 Programming 13 - 8

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

A CopyOnWriteArrayList ensures the thread-safety of any
object added to the List.

a. True

b. False

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The synchronizer classes allow threads to block until a certain state or action is reached.

Semaphore: A Semaphore maintains a set of permits. Threads try to acquire permits and
may block until other threads release permits.

CountDownLatch: A CountDownLatch allows one or more threads to await (block) until
completion of a countdown. After the countdown is complete all awaiting threads continue. A
CountDownLatch cannot be reused.

CyclicBarrier: Created with a party count. After the number of parties (threads) have
called await on the CyclicBarrier they will be released (unblock). A CyclicBarrier
can be reused.

Phaser: A more versatile version of a CyclicBarrier new to Java 7. Parties can register
and deregister over time causing the number of threads required before advancement to
change.

Exchanger: Allows two threads to swap a pair of objects, blocking until an exchange takes
place. It is a bidirectional, memory efficient, alternative to a SynchronousQueue.

Java SE 7 Programming 13 - 9

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Synchronizers

The java.util.concurrent package provides five classes
that aid common special-purpose synchronization idioms.

Class Description

Semaphore Semaphore is a classic concurrency tool.

CountDownLatch A very simple yet very common utility for blocking until a given
number of signals, events, or conditions hold

CyclicBarrier A resettable multiway synchronization point useful in some styles
of parallel programming

Phaser Provides a more flexible form of barrier that may be used to
control phased computation among multiple threads

Exchanger Allows two threads to exchange objects at a rendezvous point,
and is useful in several pipeline designs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

CyclicBarrier Behavior

In this example, if only one thread calls await() on the barrier, that thread may block
forever. After a second thread calls await(), any additional call to await() will again block
until the required number of threads is reached. A CyclicBarrier contains a method,
await(long timeout, TimeUnit unit), which will block for a specified duration and
throw a TimeoutException if that duration is reached.

Java SE 7 Programming 13 - 10

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

java.util.concurrent.CyclicBarrier

The CyclicBarrier is an example of the synchronizer
category of classes provided by java.util.concurrent.

final CyclicBarrier barrier = new CyclicBarrier(2);

new Thread() {

public void run() {

try {

System.out.println("before await - thread 1");

barrier.await();

System.out.println("after await - thread 1");

} catch (BrokenBarrierException|InterruptedException ex) {

}

}

}.start();

Two threads must await before
they can unblock.

May not be
reached

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Synchronization Alternatives

Synchronized code blocks are used to ensure that data that is not thread-safe will not be
accessed concurrently by multiple threads. However the use of synchronized code blocks can
result in performance bottlenecks. Several components of the java.util.concurrent
package provide alternatives to using synchronized code blocks. In addition to leveraging the
concurrent collections, queues, and synchronizers, there is another way to ensure that data
will not be incorrectly access by multiple threads: Simply do not allow multiple threads to
process the same data. In some scenarios, it may be possible to create multiple copies of
your data in RAM and allow each thread to process a unique copy.

Java SE 7 Programming 13 - 11

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

High-Level Threading Alternatives

Traditional Thread related APIs can be difficult to use properly.
Alternatives include:
• java.util.concurrent.ExecutorService, a higher

level mechanism used to execute tasks
– It may create and reuse Thread objects for you.

– It allows you to submit work and check on the results in the
future.

• The Fork-Join framework, a specialized work-stealing
ExecutorService new in Java 7

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Behavior of an ExecutorService

A cached thread pool ExecutorService:

• Creates new threads as needed

• Reuses its threads (Its threads do not die after finishing their task.)

• Terminates threads that have been idle for 60 seconds

Other types of ExecutorService implementations are available:
int cpuCount = Runtime.getRuntime().availableProcessors();

ExecutorService es = Executors.newFixedThreadPool(cpuCount);

A fixed thread pool ExecutorService:

• Contains a fixed number of threads

• Reuses its threads (Its threads do not die after finishing their task.)

• Queues up work until a thread is available

• Could be used to avoid over working a system with CPU-intensive tasks

Java SE 7 Programming 13 - 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

java.util.concurrent.ExecutorService

An ExecutorService is used to execute tasks.

• It eliminates the need to manually create and manage
threads.

• Tasks might be executed in parallel depending on the
ExecutorService implementation.

• Tasks can be:
– java.lang.Runnable

– java.util.concurrent.Callable

• Implementing instances can be obtained with Executors.

ExecutorService es = Executors.newCachedThreadPool();

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 13

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

java.util.concurrent.Callable

The Callable interface:

• Defines a task submitted to an ExecutorService

• Is similar in nature to Runnable, but can:
– Return a result using generics

– Throw a checked exception

package java.util.concurrent;

public interface Callable<V> {

V call() throws Exception;

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Waiting on a Future
Because the call to Future.get() will block, you must do one of the following:

• Submit all your work to the ExecutorService before calling any Future.get()
methods.

• Be prepared to wait for that Future to obtain the result.

• Use a non-blocking method such as Future.isDone() before calling Future.get()
or use Future.get(long timeout, TimeUnit unit), which will throw a
TimeoutException if the result is not available within a given duration.

Java SE 7 Programming 13 - 14

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

java.util.concurrent.Future

The Future interface is used to obtain the results from a
Callable’s V call() method.

Future<V> future = es.submit(callable);

//submit many callables

try {

V result = future.get();

} catch (ExecutionException|InterruptedException ex) {

}

Gets the result of the Callable’s
call method (blocks if needed).

ExecutorService controls
when the work is done.

If the Callable threw
an Exception

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 15

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Shutting Down an ExecutorService

Shutting down an ExecutorService is important because its
threads are nondaemon threads and will keep your JVM from
shutting down.

es.shutdown();

try {

es.awaitTermination(5, TimeUnit.SECONDS);

} catch (InterruptedException ex) {

System.out.println("Stopped waiting early");

}

If you want to wait for the
Callables to finish

Stop accepting new
Callables.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b

Java SE 7 Programming 13 - 16

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

An ExecutorService will always attempt to use all of the
available CPUs in a system.

a. True

b. False

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Wall Clock

There are different ways to measure time. In the graphic a sequence of five sequential calls to
network servers will take approximately 10 seconds if each call takes 2 seconds. On the right
side of the graphic, five concurrent calls to network servers may only take a little over 2
seconds if each call takes 2 seconds. Both examples use approximately the same amount of
CPU time, the amount of CPU cycles consumed, but have different overall durations or wall
clock time.

Java SE 7 Programming 13 - 17

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Concurrent I/O

Sequential blocking calls execute over a longer duration of time
than concurrent blocking calls.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Synchronous Invocation

In the example in this slide, we are trying to discover which vendor offers the lowest price for
an item. The client will communicate with ten different network servers; each server will take
approximately two seconds to look up the requested data and return it. There may be
additional delays introduced by network latency.

This single-threaded client must wait for each server to respond before moving on to another
server. About 20 seconds is required to retrieve all the data.

Java SE 7 Programming 13 - 18

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

A Single-Threaded Network Client

public class SingleThreadClientMain {

public static void main(String[] args) {

String host = "localhost";

for (int port = 10000; port < 10010; port++) {

RequestResponse lookup =

new RequestResponse(host, port);

try (Socket sock = new Socket(lookup.host, lookup.port);

Scanner scanner = new Scanner(sock.getInputStream());){

lookup.response = scanner.next();

System.out.println(lookup.host + ":" + lookup.port + " " +

lookup.response);

} catch (NoSuchElementException|IOException ex) {

System.out.println("Error talking to " + host + ":" +

port);

}

}

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Asynchronous Invocation

In the example in this slide, we are trying to discover which vendor offers the lowest price for
an item. The client will communicate with ten different network servers, each server will take
approximately two seconds to look up the requested data and return it. There may be
additional delays introduced by network latency.

This multithreaded client does not wait for each server to respond before attempting to
communicate with another server. About 2 seconds instead of 20 is required to retrieve all the
data.

Java SE 7 Programming 13 - 19

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

A Multithreaded Network Client (Part 1)

public class MultiThreadedClientMain {

public static void main(String[] args) {

//ThreadPool used to execute Callables

ExecutorService es = Executors.newCachedThreadPool();

//A Map used to connect the request data with the result

Map<RequestResponse,Future<RequestResponse>> callables =

new HashMap<>();

String host = "localhost";

//loop to create and submit a bunch of Callable instances

for (int port = 10000; port < 10010; port++) {

RequestResponse lookup = new RequestResponse(host, port);

NetworkClientCallable callable =

new NetworkClientCallable(lookup);

Future<RequestResponse> future = es.submit(callable);

callables.put(lookup, future);

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 20

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

A Multithreaded Network Client (Part 2)

//Stop accepting new Callables

es.shutdown();

try {

//Block until all Callables have a chance to finish

es.awaitTermination(5, TimeUnit.SECONDS);

} catch (InterruptedException ex) {

System.out.println("Stopped waiting early");

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 21

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

A Multithreaded Network Client (Part 3)

for(RequestResponse lookup : callables.keySet()) {

Future<RequestResponse> future = callables.get(lookup);

try {

lookup = future.get();

System.out.println(lookup.host + ":" + lookup.port + " " +

lookup.response);

} catch (ExecutionException|InterruptedException ex) {

//This is why the callables Map exists

//future.get() fails if the task failed

System.out.println("Error talking to " + lookup.host +

":" + lookup.port);

}

}

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 22

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

A Multithreaded Network Client (Part 4)

public class RequestResponse {

public String host; //request

public int port; //request

public String response; //response

public RequestResponse(String host, int port) {

this.host = host;

this.port = port;

}

// equals and hashCode

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 23

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

A Multithreaded Network Client (Part 5)

public class NetworkClientCallable implements Callable<RequestResponse> {

private RequestResponse lookup;

public NetworkClientCallable(RequestResponse lookup) {

this.lookup = lookup;

}

@Override

public RequestResponse call() throws IOException {

try (Socket sock = new Socket(lookup.host, lookup.port);

Scanner scanner = new Scanner(sock.getInputStream());) {

lookup.response = scanner.next();

return lookup;

}

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

CPU Count

If your tasks are compute-intensive as opposed to I/O intensive, the number of parallel tasks
should not greatly outnumber the number of processors in your system. You can detect the
number of processors easily in Java:

int count = Runtime.getRuntime().availableProcessors();

Java SE 7 Programming 13 - 24

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Parallelism

Modern systems contain multiple CPUs. Taking advantage of
the processing power in a system requires you to execute tasks
in parallel on multiple CPUs.

• Divide and conquer: A task should be divided into
subtasks. You should attempt to identify those subtasks
that can be executed in parallel.

• Some problems can be difficult to execute as parallel
tasks.

• Some problems are easier. Servers that support multiple
clients can use a separate task to handle each client.

• Be aware of your hardware. Scheduling too many parallel
tasks can negatively impact performance.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Setting the Stage

If you have a large amount of data to process but only one thread to process that data, a
single CPU will be used. In the slide's graphic, a large set of data (an array, possibly) is be
processed. The array processing could be a simple task such as finding the highest value in
the array. In a four CPU system, there would be three CPUs sitting idle while the array was
being processed.

Java SE 7 Programming 13 - 25

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Without Parallelism

Modern systems contain multiple CPUs. If you do not leverage
threads in some way, only a portion of your system’s
processing power will be utilized.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Splitting the Data

In the slide's graphic, a large set of data (an array, possibly) is split into four subsets of data,
one subset for each CPU. A thread per CPU is created to process the data. After processing,
the subsets of data the results will have to combined in a meaningful way. There are several
ways to subdivide the large dataset to be processed. It would be overly memory-intensive to
create a new array per thread that contains a copy of a portion of the original array. Each
array can share a reference to the single large array but access only a subset in a non-
blocking thread-safe way.

Java SE 7 Programming 13 - 26

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Naive Parallelism

A simple parallel solution breaks the data to be processed into
multiple sets. One data set for each CPU and one thread to
process each data set.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 27

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The Need for the Fork-Join Framework

Splitting datasets into equal sized subsets for each thread to
process has a couple of problems. Ideally all CPUs should be
fully utilized until the task is finished but:

• CPUs may run a different speeds

• Non-Java tasks require CPU time and may reduce the time
available for a Java thread to spend executing on a CPU

• The data being analyzed
may require varying
amounts of time to
process

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Work Granularity

By subdividing the data to be processed until there are more subsets than threads, we are
facilitating “work-stealing.” In work-stealing, a thread that has run out of work can steal work (a
data subset) from the processing queue of another thread. You must determine the optimal
size of the work to add to each thread’s processing queue. Overly subdividing the data to be
processed can cause unnecessary overhead, while insufficiently subdividing the data can
result in underutilization of CPUs.

Java SE 7 Programming 13 - 28

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Work-Stealing

To keep multiple threads busy:

• Divide the data to be processed into a large number of
subsets

• Assign the data subsets to a thread’s processing queue

• Each thread will have many subsets
queued

If a thread finishes all its subsets early,
it can “steal” subsets from
another thread.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Parallel Potential

In this example there are two separate tasks that could be executed in parallel. Initializing the
array with random values and searching the array for the largest possible value could both be
done in parallel.

Java SE 7 Programming 13 - 29

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

A Single-Threaded Example

int[] data = new int[1024 * 1024 * 256]; //1G

for (int i = 0; i < data.length; i++) {

data[i] = ThreadLocalRandom.current().nextInt();

}

int max = Integer.MIN_VALUE;

for (int value : data) {

if (value > max) {

max = value;

}

}

System.out.println("Max value found:" + max);

A very large dataset

Fill up the array with values.

Sequentially search the array for
the largest value.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 30

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

java.util.concurrent.ForkJoinTask<V>

A ForkJoinTask object represents a task to be executed.

• A task contains the code and data to be processed. Similar
to a Runnable or Callable.

• A huge number of tasks are created and processed by a
small number of threads in a Fork-Join pool.
– A ForkJoinTask typically creates more ForkJoinTask

instances until the data to processed has been subdivided
adequately.

• Developers typically use the following subclasses:
– RecursiveAction: When a task does not need to return a

result
– RecursiveTask: When a task does need to return a result

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 31

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

RecursiveTask Example

public class FindMaxTask extends RecursiveTask<Integer> {

private final int threshold;

private final int[] myArray;

private int start;

private int end;

public FindMaxTask(int[] myArray, int start, int end,
int threshold) {

// copy parameters to fields

}

protected Integer compute() {

// shown later

}

}

Result type of the task

The data to process

Where the work is done.
Notice the generic return type.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 32

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

compute Structure

protected Integer compute() {

if DATA_SMALL_ENOUGH {

PROCESS_DATA

return RESULT;

} else {

SPLIT_DATA_INTO_LEFT_AND_RIGHT_PARTS

TASK t1 = new TASK(LEFT_DATA);

t1.fork();

TASK t2 = new TASK(RIGHT_DATA);

return COMBINE(t2.compute(), t1.join());

}

} Block until done

Asynchronously execute

Process in current thread

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 33

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

compute Example (Below Threshold)

protected Integer compute() {

if (end - start < threshold) {

int max = Integer.MIN_VALUE;

for (int i = start; i <= end; i++) {

int n = myArray[i];

if (n > max) {

max = n;

}

}

return max;

} else {

// split data and create tasks

}

}

You decide the
threshold.

The range within
the array

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Memory Management

Notice that the same array is passed to every task but with different start and end values. If
the subset of values to be processed were copied into a new array each time a task was
created, memory usage would quickly skyrocket.

Java SE 7 Programming 13 - 34

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

compute Example (Above Threshold)

protected Integer compute() {

if (end - start < threshold) {

// find max

} else {

int midway = (end - start) / 2 + start;

FindMaxTask a1 =

new FindMaxTask(myArray, start, midway, threshold);

a1.fork();

FindMaxTask a2 =

new FindMaxTask(myArray, midway + 1, end, threshold);

return Math.max(a2.compute(), a1.join());

}

}

Task for left half of data

Task for right half of data

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 35

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

ForkJoinPool Example

A ForkJoinPool is used to execute a ForkJoinTask. It
creates a thread for each CPU in the system by default.

ForkJoinPool pool = new ForkJoinPool();

FindMaxTask task =

new FindMaxTask(data, 0, data.length-1, data.length/16);

Integer result = pool.invoke(task);

The task's compute method is
automatically called .

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Parallel Sorting

When using Fork-Join to sort an array in parallel, you end up sorting many small arrays and
then having to combine the small sorted arrays into larger sorted arrays. For an example see
the sample application provided with the JDK in C:\Program
Files\Java\jdk1.7.0\sample\forkjoin\mergesort.

Java SE 7 Programming 13 - 36

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Fork-Join Framework Recommendations

• Avoid I/O or blocking operations.
– Only one thread per CPU is created by default. Blocking

operations would keep you from utilizing all CPU resources.

• Know your hardware.
– A Fork-Join solution will perform slower on a one-CPU

system than a standard sequential solution.

– Some CPUs increase in speed when only using a single
core, potentially offsetting any performance gain provided by
Fork-Join.

• Know your problem.
– Many problems have additional overhead if executed in

parallel (parallel sorting, for example).

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b

Java SE 7 Programming 13 - 37

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Applying the Fork-Join framework will always result in a
performance benefit.

a. True

b. False

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 13 - 38

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Use atomic variables
• Use a ReentrantReadWriteLock

• Use the java.util.concurrent collections

• Describe the synchronizer classes
• Use an ExecutorService to concurrently execute tasks

• Apply the Fork-Join framework

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this practice, you create a multithread network client.

Java SE 7 Programming 13 - 39

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

(Optional) Practice 13-1 Overview:
Using the java.util.concurrent Package

This practice covers the following topics:
• Using a cached thread pool (ExecutorService)

• Implementing Callable

• Receiving Callable results with a Future

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this practice, you create a multithread network client.

Java SE 7 Programming 13 - 40

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

(Optional) Practice 13-2 Overview:
Using the Fork-Join Framework

This practice covers the following topics:
• Extending RecursiveAction

• Creating and using a ForkJoinPool

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Building Database Applications with JDBC

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 14 - 2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

• Define the layout of the JDBC API

• Connect to a database by using a JDBC driver

• Submit queries and get results from the database

• Specify JDBC driver information externally

• Use transactions with JDBC
• Use the JDBC 4.1 RowSetProvider and

RowSetFactory

• Use a Data Access Object Pattern to decouple data and
business methods

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The JDBC API is made up of some concrete classes, such as Date, Time, and
SQLException, and a set of interfaces that are implemented in a driver class that is provided
by the database vendor.

Because the implementation is a valid instance of the interface method signature, once the
database vendor’s Driver classes are loaded, you can access them by following the sequence
shown in the slide:

1. Use the class DriverManager to obtain a reference to a Connection object using the
getConnection method . The typical signature of this method is getConnection
(url, name, password), where url is the JDBC URL, and name and password
are strings that the database will accept for a connection.

2. Use the Connection object (implemented by some class that the vendor provided) to
obtain a reference to a Statement object through the createStatement method.
The typical signature for this method is createStatement () with no arguments.

3. Use the Statement object to obtain an instance of a ResultSet through an
executeQuery (query) method. This method typically accepts a string (query)
where query is a static string SQL.

Java SE 7 Programming 14 - 3

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Using the JDBC API

1

2

3

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

DriverManager

Any JDBC 4.0 drivers that are found in the class path are automatically loaded. The
DriverManager.getConnectionmethod will attempt to load the driver class by looking at
the file META_INF/services/java.sql.Driver. This file contains the name of the JDBC
driver’s implementation of java.sql.Driver. For example, the contents of META-
INF/services/java.sql.driver file in the derbyclient.jar contains
org.apache.derby.jdbc.ClientDriver.

Drivers prior to JDBC 4.0 must be loaded manually by using:

try {

java.lang.Class.forName("<fully qualified path of the driver>");

} catch (ClassNotfoundException c) {

}

Driver classes can also be passed to the interpreter on the command line:

java –djdbc.drivers=<fully qualified path to the driver> <class to
run>

Java SE 7 Programming 14 - 4

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Using a Vendor’s Driver Class

The DriverManager class is used to get an instance of a
Connection object, using the JDBC driver named in the JDBC
URL:
String url = "jdbc:derby://localhost:1527/EmployeeDB";

Connection con = DriverManager.getConnection (url);

• The URL syntax for a JDBC driver is:
jdbc:<driver>:[subsubprotocol:][databaseName][;attribute=value]

• Each vendor can implement its own subprotocol.

• The URL syntax for an Oracle Thin driver is:
jdbc:oracle:thin:@//[HOST][:PORT]/SERVICE

Example:
jdbc:oracle:thin:@//myhost:1521/orcl

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Connections, Statements, and ResultSets

The real beauty of the JDBC API lies in the way it provides a flexible and portable way to
communicate with a database.

The JDBC driver that is provided by a database vendor implements each of these Java
interfaces. Your Java code can use the interface knowing that the database vendor provided
the implementation of each of the methods in the interface.

Connection is an interface that provides a session with the database. While the connection
object is open, you can access the database, create statements, get results, and manipulate
the database. When you close a connection, the access to the database is terminated and the
open connection closed.

Statement is an interface that provides a class for executing SQL statements and returning
the results. The Statement interface is for static SQL queries. There are two other
subinterfaces: PreparedStatement, which extends Statement and
CallableStatement, which extends PreparedStatement.

ResultSet is an interface that manages the resulting data returned from a Statement.

Note: SQL commands and keywords are case-insensitive—that is, you can use SELECT, or
Select. SQL table and column names (identifiers) may be case-insensitive or case-sensitive
depending upon the database. SQL identifiers are case-insensitive in the Derby database
(unless delimited).

Java SE 7 Programming 14 - 5

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Key JDBC API Components

Each vendor’s JDBC driver class also implements the key API
classes that you will use to connect to the database, execute
queries, and manipulate data:
• java.sql.Connection: A connection that represents

the session between your Java application and the
database
Connection con = DriverManager.getConnection(url,

username, password);

• java.sql.Statement: An object used to execute a
static SQL statement and return the result
Statement stmt = con.createStatement();

• java.sql.ResultSet: A object representing a database
result set
String query = "SELECT * FROM Employee";

ResultSet rs = stmt.executeQuery(query);

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

ResultSet Objects
• ResultSet maintains a cursor to the returned rows. The cursor is initially pointing

before the first row.

• The ResultSet.next() method is called to position the cursor in the next row.

• The default ResultSet is not updatable and has a cursor that points only forward.

• It is possible to produce ResultSet objects that are scrollable and/or updatable. The
following code fragment, in which con is a valid Connection object, illustrates how to
make a result set that is scrollable and insensitive to updates by others, and that is
updatable:

Statement stmt
= con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT a, b FROM TABLE2");

Note: Not all databases support scrollable result sets.

ResultSet has accessor methods to read the contents of each column returned in a row.
ResultSet has a getter method for each type.

Java SE 7 Programming 14 - 6

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Using a ResultSet Object

String query = "SELECT * FROM Employee";

ResultSet rs = stmt.executeQuery(query);

110 Troy Hammer 1965-03-31 102109.15

123 Michael Walton 1986-08-25 93400.20

201 Thomas Fitzpatrick 1961-09-22 75123.45

101 Abhijit Gopali 1956-06-01 70000.00

ResultSet cursor

rs.next()

rs.next()

rs.next()

rs.next()

rs.next() null

The last next() method invocation returns
false, and the rs instance is now null.

The first next() method invocation returns
true, and rs points to the first row of data.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this slide and in the following slide, you see a complete example of a JDBC application, a
simple one that reads all the rows from an Employee database and returns the results as
strings to the console.

• Line 15–16: Use a try-with-resources statement to get an instance of an object that
implements the Connection interface.

• Line 17: Use that object to get an instance of an object that implements the Statement
interface from the Connection object.

• Line 18: Create a ResultSet by executing the string query using the Statement
object.

Note: Hard coding the JDBC URL, username, and password makes an application less
portable. Instead, consider using java.io.Console to read the username and password
and/or some type of authentication service.

Java SE 7 Programming 14 - 7

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Putting It All Together

1 package com.example.text;

2

3 import java.sql.DriverManager;

4 import java.sql.ResultSet;

5 import java.sql.SQLException;

6 import java.util.Date;

7

8 public class SimpleJDBCTest {

9

10 public static void main(String[] args) {

11 String url = "jdbc:derby://localhost:1527/EmployeeDB";

12 String username = "public";

13 String password = "tiger";

14 String query = "SELECT * FROM Employee";

15 try (Connection con =

16 DriverManager.getConnection (url, username, password);

17 Statement stmt = con.createStatement ();

18 ResultSet rs = stmt.executeQuery (query)) {

The hard-coded JDBC
URL, username, and
password is just for this
simple example.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

• Lines 20–24: Get the results of each of the data fields in each row read from the
Employee table.

• Lines 25–28: Print the resulting data fields to the system console.

• Line 30: SQLException: This class extends Exception thrown by the
DriverManager, Statement, and ResultSet methods. (More about this exception
class in the next slide.)

• Line 32: This is the closing brace for the try-with-resources statement on line 15.

This example is from the SimpleJDBCExample project.

Output:

run:

Employee ID: 110

Employee Name: Troy Hammer

Birth Date: 1965-03-31

Salary: 102109.15

etc.

Java SE 7 Programming 14 - 8

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Putting It All Together

19 while (rs.next()) {

20 int empID = rs.getInt("ID");

21 String first = rs.getString("FirstName");

22 String last = rs.getString("LastName");

23 Date birthDate = rs.getDate("BirthDate");

24 float salary = rs.getFloat("Salary");

25 System.out.println("Employee ID: " + empID + "\n"

26 + "Employee Name: " + first + " " + last + "\n"

27 + "Birth Date: " + birthDate + "\n"

28 + "Salary: " + salary);

29 } // end of while

30 } catch (SQLException e) {

31 System.out.println("SQL Exception: " + e);

32 } // end of try-with-resources

33 }

34 }

Loop through all of the
rows in the ResultSet.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In general, you will probably write an application that leverages the capabilities and features
of the database you are working with. However, if you want to write a portable application, you
need to consider what support each database will provide for SQL types and functionality.
Fortunately, you can query the database driver programmatically to determine what level of
support the driver provides. The DatabaseMetaData interface has a set of methods that the
driver developer uses to indicate what the driver supports, including support for the entry,
intermediate, or full support for SQL-92.

The DatabaseMetaData interface also includes other methods that determine what type of
support the database provides for queries, types, transactions, and more.

Java SE 7 Programming 14 - 9

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Writing Portable JDBC Code

The JDBC driver provides a programmatic “insulating” layer
between your Java application and the database. However, you
also need to consider SQL syntax and semantics when writing
database applications.

• Most databases support a standard set of SQL syntax and
semantics described by the American National Standards
Institute (ANSI) SQL-92 Entry-level specification.

• You can programmatically check for support for this
specification from your driver:
Connection con = DriverManager.getConnection(url, username,

password);

DatabaseMetaData dbm = con.getMetaData();

if (dbm.supportsANSI92EntrySQL()) {

// Support for Entry-level SQL-92 standard

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

• A SQLException is thrown from errors that occur in one of the following types of
actions: driver methods, methods that access the database, or attempts to get a
connection to the database.

• The SQLException class also implements Iterable. Exceptions can be chained
together and returned as a single object.

• SQLException is thrown if the database connection cannot be made due to incorrect
username or password information or simply the database is offline.

• SQLException can also result by attempting to access a column name that is not part
of the SQL query.

• SQLException is also subclassed, providing granularity of the actual exception thrown.

Note: SQLState and SQLErrorCode values are database dependent. For Derby, the
SQLState values are defined here:
http://download.oracle.com/javadb/10.8.1.2/ref/rrefexcept71493.html.

Java SE 7 Programming 14 - 10

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The SQLException Class

SQLException can be used to report details about resulting
database errors. To report all the exceptions thrown, you can
iterate through the SQLExceptions thrown:
1 catch(SQLException ex) {

2 while(ex != null) {

3 System.out.println("SQLState: " + ex.getSQLState());

4 System.out.println("Error Code:" + ex.getErrorCode());

5 System.out.println("Message: " + ex.getMessage());

6 Throwable t = ex.getCause();

7 while(t != null) {

8 System.out.println("Cause:" + t);

9 t = t.getCause();

10 }

11 ex = ex.getNextException();

12 }

13 }

Vendor-dependent state
codes, error codes and
messages

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

• Closing a Connection object will automatically close any Statement objects created
with this Connection.

• Closing a Statement object will close and invalidate any instances of ResultSet
created by the Statement object.

• Resources held by the ResultSet, may not be released until garbage is collected, so it
is a good practice to explicitly close ResultSet objects when they are no longer
needed.

• When the close() method on ResultSet is executed, external resources are
released.

• ResultSet objects are also implicitly closed when an associated Statement object is
re-executed.

In summary, it is a good practice to explicitly close JDBC Connection, Statement and
ResultSet objects when you no longer need them.

Note: A connection with the database can be an expensive operation. It is a good practice to
either maintain Connection objects for as long as possible, or use a connection pool.

Java SE 7 Programming 14 - 11

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Closing JDBC Objects

Connection

Statement Statement

ResultSet ResultSet

close() Connection

Closes Statements

Invalidates
ResultSets

Resources not
released until

next GC

One Way Better Way

close()

Resources
released

close()

close()

Call close explicitly or
in try-with-resources

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

One of the JDK 7 features is the try-with-resources statement. This is an enhancement that
will automatically close open resources.

With JDBC 4.1, the JDBC API classes including ResultSet, Connection, and
Statement, implement java.lang.AutoCloseable. The close() method of the
ResultSet, Statement, and Connection objects will be called in order in this example.

Java SE 7 Programming 14 - 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The try-with-resources Construct

Given the following try-with-resources statement:
try (Connection con =

DriverManager.getConnection(url, username, password);

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery (query)){

• The compiler checks to see that the object inside the
parentheses implements java.lang.AutoCloseable.

– This interface includes one method: void close().

• The close method is automatically called at the end of the
try block in the proper order (last declaration to first).

• Multiple closeable resources can be included in the try
block, separated by semicolons.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Avoid This try-with-resources Pitfall

It may appear to be a time-saving way to write these three statements, but the net effect is
that the Connection returned by the DriverManager is never explicitly closed after the
end of the try block, which is not a good practice.

Java SE 7 Programming 14 - 13

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

try-with-resources: Bad Practice

It might be tempting to write try-with-resources more
compactly:
try (ResultSet rs = DriverManager.getConnection(url, username,
password).createStatement().executeQuery(query)) {

• However, only the close method of ResultSet is called,
which is not a good practice.

• Always keep in mind which resources you need to close
when using try-with-resources.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

A SQL statement is executed against a database using an instance of a Statement object.
The Statement object is a wrapper object for a query. A Statement object is obtained through
a Connection object—the database connection. So it makes sense that from a Connection,
you get an object that you can use to write statements to the database.

The Statement interface provides three methods for creating SQL queries and returning a
result. Which one you use depends upon the type of SQL statement you want to use:

• executeQuery(sqlString): For a SELECT statement, returns a ResultSet object

• executeUpdate(sqlString): For INSERT, UPDATE, and DELETE statements,
returns an int (number of rows affected), or 0 when the statement is a Data Definition
Language (DDL) statement, such as CREATE TABLE.

• execute(sqlString): For any SQL statement, returns a boolean indicating if a
ResultSet was returned. Multiple SQL statements can be executed with execute.

Java SE 7 Programming 14 - 14

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Writing Queries and Getting Results

To execute SQL queries with JDBC, you must create a SQL
query wrapper object, an instance of the Statement object.
Statement stmt = con.createStatement();

• Use the Statement instance to execute a SQL query:
ResultSet rs = stmt.executeQuery (query);

• Note that there are three Statement execute methods:

Method Returns Used for

executeQuery(sqlString) ResultSet SELECT statement

executeUpdate(sqlString) int (rows
affected)

INSERT, UPDATE,
DELETE, or a DDL

execute(sqlString) boolean (true if
there was a
ResultSet)

Any SQL command
or commands

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this practice, you will start the database from within NetBeans, populate the database with
data, run some SQL queries, and compile and run a simple application that returns the rows
of the Employee database table.

Java SE 7 Programming 14 - 15

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practice 14-1 Overview:
Working with the Derby Database and JDBC

This practice covers the following topics:

• Starting the JavaDB (Derby) database from within
NetBeans IDE

• Populating the database with data (the Employee table)

• Running SQL queries to look at the data

• Compiling and running the sample JDBC application

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The ResultSetMetaData class is obtained from a ResultSet.

The getColumnCount returns the number of columns returned in the query that produced
the ResultSet.

The getColumnName and getColumnTypeName methods return strings. These could be
used to perform a dynamic retrieval of the column data.

Note: These methods use 1 to indicate the first column, not 0.

Given a query of "SELECT * FROM Employee" and the Employee data table from the
practices, this fragment produces this result:

Number of columns returned: 5

Column names/types returned:

ID : INTEGER

FIRSTNAME : VARCHAR

LASTNAME : VARCHAR

BIRTHDATE : DATE

SALARY : REAL

Java SE 7 Programming 14 - 16

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

ResultSetMetaData

There may be a time where you need to dynamically discover
the number of columns and their type.
1 int numCols = rs.getMetaData().getColumnCount();

2 String [] colNames = new String[numCols];

3 String [] colTypes = new String[numCols];

4 for (int i= 0; i < numCols; i++) {

5 colNames[i] = rs.getMetaData().getColumnName(i+1);

6 colTypes[i] = rs.getMetaData().getColumnTypeName(i+1);

7 }

8 System.out.println ("Number of columns returned: " + numCols);

9 System.out.println ("Column names/types returned: ");

10 for (int i = 0; i < numCols; i++) {

11 System.out.println (colNames[i] + " : " + colTypes[i]);

12 }

Note that these
methods are indexed
from 1, not 0.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Note: Recall that to create a ResultSet that is scrollable, you must define the ResultSet
type in the createStatement method:

Statement stmt =
con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);

There is another technique for non-scrollable ResultSets. Using the SQL COUNT function,
one query determines the number of rows and a second reads the results. Be aware that this
technique requires locking control over the tables to ensure the count is not changed during
the operation:

ResultSet rs = stmt.executeQuery("SELECT COUNT(*) FROM EMPLOYEE");

rs.next();

int count = rs.getInt(1);

rs.stmt.excuteQuery ("SELECT * FROM EMPLOYEE");

// process results

Java SE 7 Programming 14 - 17

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Getting a Row Count

A common question when executing a query is: “How many
rows were returned?”

1 public int rowCount(ResultSet rs) throws SQLException{

2 int rowCount = 0;

3 int currRow = rs.getRow();

4 // Valid ResultSet?

5 if (!rs.last()) return -1;

6 rowCount = rs.getRow();

7 // Return the cursor to the current position

8 if (currRow == 0) rs.beforeFirst();

9 else rs.absolute(currRow);

10 return rowCount;

11 }

• To use this technique, the ResultSet must be scrollable.

Move the cursor to the last row,
this method returns false if
the ResultSet is empty.

Returning the row cursor to
its original position before
the call is a good practice.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Note: Normally the most efficient fetch size is already the default for the driver.

Java SE 7 Programming 14 - 18

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Controlling ResultSet Fetch Size

By default, the number of rows fetched at one time by a query
is determined by the JDBC driver. You may wish to control this
behavior for large data sets.

• For example, if you wanted to limit the number of rows
fetched into cache to 25, you could set the fetch size:

rs.setFetchSize(25);

• Calls to rs.next() return the data in the cache until the
26th row, at which time the driver will fetch another 25
rows.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

PreparedStatement

The SQL statement in the example in the slide is precompiled and stored in the
PreparedStatement object. This statement can be used efficiently to execute this
statement multiple times. This example could be in a loop, looking at different values.

Prepared statements can also be used to prevent SQL injection attacks. For example, where
a user is allowed to enter a string, that when executed as a part of a SQL statement, enables
the user to alter the database in unintended ways (like granting themselves permissions).

Note: PreparedStatement setXXXX methods index parameters from 1, not 0. The first
parameter in a prepared statement is 1, the second parameter is 2, and so on.

Java SE 7 Programming 14 - 19

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Using PreparedStatement

PreparedStatement is a subclass of Statement that allows
you to pass arguments to a precompiled SQL statement.

double value = 100_000.00;

String query = "SELECT * FROM Employee WHERE Salary > ?";

PreparedStatement pStmt = con.prepareStatement(query);

pStmt.setDouble(1, value);

ResultSet rs = pStmt.executeQuery();

• In this code fragment, a prepared statement returns all
columns of all rows whose salary is greater than $100,000.

• PreparedStatement is useful when you have a SQL
statements that you are going to execute multiple times.

Substitutes value for the first
parameter in the prepared statement.

Parameter for substitution.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Derby Stored Procedures

The Derby database uses the Java programming language for its stored procedures.

In the example shown in the slide, the stored procedure is declared using the following
syntax:

CREATE PROCEDURE EmplAgeCount (IN age INTEGER, OUT num INTEGER)
DYNAMIC RESULT SETS 0
LANGUAGE JAVA
EXTERNAL NAME 'DerbyStoredProcedure.countAge'
PARAMETER STYLE JAVA
READS SQL DATA;

A Java class is loaded into the Derby database using the following syntax:

CALL SQLJ.install_jar ('D:\temp\DerbyStoredProcedure.jar',
'PUBLIC.DerbyStoredProcedure', 0);

CALL
syscs_util.syscs_set_database_property('derby.database.classpath',
'PUBLIC.DerbyStoredProcedure');

Java SE 7 Programming 14 - 20

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Using CallableStatement

A CallableStatement allows non-SQL statements (such as
stored procedures) to be executed against the database.
CallableStatement cStmt

= con.prepareCall("{CALL EmplAgeCount (?, ?)}");

int age = 50;

cStmt.setInt (1, age);

ResultSet rs = cStmt.executeQuery();

cStmt.registerOutParameter(2, Types.INTEGER);

boolean result = cStmt.execute();

int count = cStmt.getInt(2);

System.out.println("There are " + count +

" Employees over the age of " + age);

• Stored procedures are executed on the database.

The IN parameter is passed in
to the stored procedure.

The OUT parameter is returned
from the stored procedure.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Java class stored in the Derby database that performs the stored procedure calculates a
date that is age years in the past based on today’s date. The SQL query counts the number of
unique employees that are older (or equal to) the number of years passed in and returns that
count as the second parameter of the stored procedure. The code in this example looks like
this:

import java.sql.Connection;

import java.sql.Date;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.Calendar;

public class DerbyStoredProcedure {

public static void countAge (int age, int[] count) throws SQLException {

String url = "jdbc:default:connection";

Connection con = DriverManager.getConnection(url);

String query = "SELECT COUNT(DISTINCT ID) " +

"AS count FROM Employee " +

"WHERE Birthdate <= ?";

PreparedStatement ps = con.prepareStatement(query);

Calendar now = Calendar.getInstance();

now.add(Calendar.YEAR, (age*-1));

Date past = new Date (now.getTimeInMillis());

ps.setDate(1, past);

ResultSet rs = ps.executeQuery();

if (rs.next()) {

count[0] = rs.getInt(1);

} else {

count[0] = 0;

}

con.close();

}

}

Consult the Derby Reference Manual and Derby Tools and Utilities Guide for more
information on creating stored procedures.

Java SE 7 Programming 14 - 21

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

A classic example of when a transaction would be used is as follows. Suppose that a client
application needs to make a service request that might involve multiple read and write
operations to a database. If any one invocation is unsuccessful, any state that is written
(either in memory or, more typically, to a database) must be rolled back.

Consider an interbank fund transfer application in which money is transferred from one bank
to another.

The transfer operation requires the server to make the following invocations:

1. Invoking the debit method on one account at the first bank

2. Invoking the credit method on another account at the second bank

If the credit invocation on the second bank fails, the banking application must roll back the
previous debit invocation on the first bank.

Note: When a transaction spans multiple databases, more complicated transaction services
may be required.

Java SE 7 Programming 14 - 22

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

What Is a Transaction?

• A transaction is a mechanism to handle groups of
operations as though they were one.

• Either all operations in a transaction occur or none occur
at all.

• The operations involved in a transaction might rely on one
or more databases.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Transactions should have the following ACID properties:

• Atomicity: All or nothing; all operations involved in the transaction are implemented or
none are.

• Consistency: The database must be modified from one consistent state to another. In
the event the system or database fails during the transaction, the original state is
restored (rolled back).

• Isolation: An executing transaction is isolated from other executing transactions in
terms of the database records it is accessing.

• Durability: After a transaction is committed, it can be restored to this state in the event
of a system or database failure.

Java SE 7 Programming 14 - 23

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

ACID Properties of a Transaction

A transaction is formally defined by the set of properties that is
known by the acronym ACID.

• Atomicity: A transaction is done or undone completely. In
the event of a failure, all operations and procedures are
undone, and all data rolls back to its previous state.

• Consistency: A transaction transforms a system from one
consistent state to another consistent state.

• Isolation: Each transaction occurs independently of other
transactions that occur at the same time.

• Durability: Completed transactions remain permanent,
even during system failure.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Transactions are appropriate in the following scenarios. Each situation describes a
transaction model that is supported by the resource local transaction model implementation in
the EntityManager instance.

A client application must converse with an object that is managed, and it must make multiple
invocations on a specific object instance. The conversation can be characterized by one or
more of the following:

A. Data is cached in memory or written to a database during or after each successive
invocation.

B. Data is written to a database at the end of the conversation.
C. The client application requires that the object maintains an in-memory context between

each invocation; each successive invocation uses the data that is maintained in
memory.

D. At the end of the conversation, the client application requires the capability to cancel all
the database write operations that may have occurred during or at the end of the
conversation.

Consider a shopping cart application. Users of the client application browse an online catalog
and make multiple purchase selections. They proceed to check out and enter credit card
information to make the purchase. If the credit card verification fails, the shopping application
must cancel all the pending purchase selections in the shopping cart or roll back the purchase
transactions made during the conversation.

Java SE 7 Programming 14 - 24

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Transferring Without Transactions

• Successful transfer (A)

• Unsuccessful transfer (Accounts are left in an inconsistent
state.) (B)

$1000
+$100
$1100

$500
-$100
$400

2) Deposit: $100

1) Withdraw: $100

Transfer: $100
From: Acct 1
To: Acct 2

ATM

Account 1

Account 2

$1000

$500
-$100
$400

1) Withdraw: $100

Transfer: $100
From: Acct 1
To: Acct 2

ATM

A

B
Failed

Deposit

Bank

Bank

Account 1

Account 2

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

If the transaction is successful, the buffered changes are committed, that is, made permanent.

Within the scope of one client invocation on an object, the object performs multiple changes to
the data in a database. If one change fails, the object must roll back all the changes. Consider
a banking application. The client invokes the transfer operation on a teller object. The
operation requires the teller object to make the following invocations on the bank database:

1. Invoking the debit method on one account

2. Invoking the credit method on another account

If the credit invocation on the bank database fails, the banking application must roll back the
previous debit invocation.

Java SE 7 Programming 14 - 25

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Successful Transfer with Transactions

• Changes within a transaction are buffered. (A)

• If a transfer is successful, changes are committed (made
permanent). (B)

$1100

$400Commit

Transfer
Successful Commit

$1000
+$100
$1100

$500
-$100
$400

2) Deposit: $100

1) Withdraw: $100

Transfer: $100
From: Acct 1
To: Acct 2

ATM

Account 1

Account 2

A Bank

Transaction Started by Bank

Account 1

Account 2

ATMB Bank

Transaction Started by Bank

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

If the transaction is unsuccessful, the buffered changes are thrown out and the database is
rolled back to its previous consistent state.

Java SE 7 Programming 14 - 26

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Unsuccessful Transfer with Transactions

• Changes within a transaction are buffered. (A)

• If a problem occurs, the transaction is rolled back to the
previous consistent state. (B)

$500
-$100
$400

1) Withdraw: $100

Transfer: $100
From: Acct 1
To: Acct 2

ATM

Account 1

Account 2

A Bank

Transaction Started by Bank

$1000
Failed

Deposit

$1000

$500Rollback

Error Message
Rollback

ATMB Bank

Transaction Started by Bank

Account 1

Account 2

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

By default, JDBC auto-commits all SQL statements. However, when you want to create an
atomic operation that involves multiple SQL statements, you must disable auto-commit.

After auto-commit is disabled, no SQL statements are committed to the database until you
explicitly call the commit method.

The other advantage of managing your own transactions is the ability to rollback a set of SQL
statements in the event of a failure using the rollback method.

Note: JDBC does not have an API to explicitly begin a transaction. The JDBC JSR (221)
provides the following guidelines:

• When auto-commit is disabled for a Connection object, all subsequent Statements
are in a transaction context until either the Connection commit or rollback method is
executed.

• If the value of auto-commit is changed in the middle of a transaction, the current
transaction is committed.

In addition, the Derby driver documentation adds the following:

• A transaction context is associated with a single Connection object (and database). A
transaction cannot span multiple Connections (or databases).

Note: A sample application using transactions is in the project file
JDBCTransactionsExample in the examples directory.

Java SE 7 Programming 14 - 27

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

JDBC Transactions

By default, when a Connection is created, it is in auto-commit
mode.

• Each individual SQL statement is treated as a transaction
and automatically committed after it is executed.

• To group two or more statements together, you must
disable auto-commit mode.

con.setAutoCommit (false);

• You must explicitly call the commit method to complete the
transaction with the database.

con.commit();

• You can also programmatically roll back transactions in the
event of a failure.

con.rollback();

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

RowSet 1.1
New for JDK7 are the javax.sql.rowset.RowSetProvider and
javax.sql.rowset.RowSetFactory classes. These two classes are used to construct
instances of RowSets as discussed in the next slide.

Java SE 7 Programming 14 - 28

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

RowSet 1.1: RowSetProvider and
RowSetFactory

The JDK 7 API specification introduces the new RowSet 1.1
API. One of the new features of this API is RowSetProvider.

• javax.sql.rowset.RowSetProvider is used to
create a RowSetFactory object:
myRowSetFactory = RowSetProvider.newFactory();

• The default RowSetFactory implementation is:
com.sun.rowset.RowSetFactoryImpl

• RowSetFactory is used to create one of the RowSet 1.1
RowSet object types.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

• CachedRowSet: A CachedRowSet object is a container for rows of data that caches its
rows in memory. This makes it possible to operate without always being connected to its
data source. Further, it is a JavaBeans component and is scrollable, updatable, and
serializable. A CachedRowSet object typically contains rows from a result set, but it can
also contain rows from any file with a tabular format, such as a spreadsheet. The
reference implementation supports getting data only from a ResultSet object, but
developers can extend the SyncProvider implementations to provide access to other
tabular data sources.

• FilteredRowSet: A JDBC FilteredRowSet standard implementation implements
the RowSet interfaces and extends the CachedRowSet class. The CachedRowSet
class provides a set of protected cursor manipulation methods, which a
FilteredRowSet implementation can override to supply filtering support.

Java SE 7 Programming 14 - 29

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Using RowSet 1.1 RowSetFactory

RowSetFactory is used to create instances of RowSet
implementations:

RowSet type Provides

CachedRowSet A container for rows of data that caches its rows in
memory

FilteredRowSet A RowSet object that provides methods for filtering
support

JdbcRowSet A wrapper around ResultSet to treat a result set as a
JavaBeans component

JoinRowSet A RowSet object that provides mechanisms for
combining related data from different RowSet objects

WebRowSet A RowSet object that supports the standard XML
document format required when describing a RowSet
object in XML

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

• JdbcRowSet: A JdbcRowSet is a wrapper around a ResultSet object that makes it
possible to use the result set as a JavaBeans component. Thus, a JdbcRowSet object
can be one of the Beans that a tool makes available for composing an application.
Because a JdbcRowSet is a connected rowset, that is, it continually maintains its
connection to a database using a JDBC technology–enabled driver, it also effectively
makes the driver a JavaBeans component.

• JoinRowSet: The JoinRowSet interface provides a mechanism for combining related
data from different RowSet objects into one JoinRowSet object, which represents a
SQL JOIN. In other words, a JoinRowSet object acts as a container for the data from
the RowSet objects that form a SQL JOIN relationship.

• WebRowSet: The WebRowSet interface describes the standard XML document format
required when describing a RowSet object in XML, and must be used by all standard
implementations of the WebRowSet interface to ensure interoperability. In addition, the
WebRowSet schema uses specific SQL/XML Schema annotations, thus ensuring
greater cross-platform interoperability. This is an effort currently under way at the ISO
organization.

Java SE 7 Programming 14 - 30

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In the code fragment in the slide, you create a JdbcRowSet instance from
RowSetProviderFactory.

You then treat the object like a RowSet JavaBean. You can use setter methods to set the
url, username, and password, and then execute a SQL command and obtain a
ResultSet to retrieve the column values.

This example is from the SimpleJDBCRowSetExample project.

Java SE 7 Programming 14 - 31

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Example: Using JdbcRowSet

10 try (JdbcRowSet jdbcRs =

11 RowSetProvider.newFactory().createJdbcRowSet()) {

12 jdbcRs.setUrl(url);

13 jdbcRs.setUsername(username);

14 jdbcRs.setPassword(password);

15 jdbcRs.setCommand("SELECT * FROM Employee");

16 jdbcRs.execute();

17 // Now just treat JDBC Row Set like a ResultSet object

18 while (jdbcRs.next()) {

19 int empID = jdbcRs.getInt("ID");

20 String first = jdbcRs.getString("FirstName");

21 String last = jdbcRs.getString("LastName");

22 Date birthDate = jdbcRs.getDate("BirthDate");

23 float salary = jdbcRs.getFloat("Salary");

24 }

25 //... other methods

26 }

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Employee Table
In the SimpleJDBCExample application shown in the previous slide, there is tight coupling
between the operations used to access the data and the Employee table itself. Granted that
the example is simple, but if you imagine this type of access in a larger application, perhaps
with multiple tables with inter-table relationships, you can see how directly accessing the
database in the same class as the business methods could create problems later if the
Employee table were to change.

Further, because you are accessing the data directly, you do not have any way of passing the
notion of an Employee around. You need to treat an Employee as an object.

Java SE 7 Programming 14 - 32

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Data Access Objects

Consider an employee table like the one in the sample JDBC
code.

• By combining the code that accesses the database with
the “business” logic, the data access methods and the
Employee table are tightly coupled.

• Any changes to the table (such as adding a field) will
require a complete change to the application.

• Employee data is not encapsulated within the example
application.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The Data Access Object and Factory Pattern

The purpose of a Data Access Object (DAO) is to separate database-related activities from
the business model. In this design pattern, there are two techniques to insure future design
flexibility.

1. A factory is used to generate instances (references) to an implementation of the
EmployeeDAO interface. A factory makes it possible to insulate the developer using the
DAO from the details about how a DAO implementation is instantiated. As you have
seen, this same pattern was used to create an implementation where the data was
stored in memory.

2. An EmployeeDAO interface is designed to model the behavior that you want to allow on
the Employee data. Note that this technique of separating behavior from data
demonstrates a separation of concerns. The EmployeeDAO interface encourages
additional separation between the implementation of the methods required to support
the DAO and references to EmployeeDAO objects.

3. The EmployeeDAOJDBCImpl implements the EmployeeDAO interface. The
implementation class can be replaced with a different implementation without impacting
the client application.

Java SE 7 Programming 14 - 33

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The Data Access Object Pattern

1

2

3

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 14 - 34

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Define the layout of the JDBC API

• Connect to a database by using a JDBC driver

• Submit queries and get results from the database

• Specify JDBC driver information externally

• Use transactions with JDBC
• Use the JDBC 4.1 RowSetProvider and

RowSetFactory

• Use a Data Access Object Pattern
to decouple data and business methods

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b
a: execute returns a boolean (true if there is a ResultSet. This can be used with any

SQL statement).

c: executeQuery returns a ResultSet (used with a SELECT statement).

d: This is not a valid Statement method.

Java SE 7 Programming 14 - 35

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Which Statement method executes a SQL statement and
returns the number of rows affected?
a. stmt.execute(query);

b. stmt.executeUpdate(query);

c. stmt.executeQuery(query);

d. stmt.query(query);

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b (False)

A ResultSet’s pointer is always pointing to just before the first row, regardless of whether it is
one row or multiple rows.

Java SE 7 Programming 14 - 36

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

When using a Statement to execute a query that returns only
one record, it is not necessary to use the ResultSet's
next() method.

a. True

b. False

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: a (True)
This illustrates a good practice: explicitly closing the ResultSet in try-with-resources.

Java SE 7 Programming 14 - 37

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

The following try-with-resources statement will properly close
the JDBC resources:
try (Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(query)){

//...

} catch (SQLException s) {

}

a. True

b. False

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c
Notice on line15, the PreparedStatement setObject method is called using the array
index, 0, instead of 1 for the first parameter. To fix this code, you should replace line 15 with:

pStmt.setObject(i+1, params[i]);

Java SE 7 Programming 14 - 38

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Given:
10 String[] params = {"Bob", "Smith"};

11 String query = "SELECT itemCount FROM Customer " +

12 "WHERE lastName='?' AND firstName='?'";

13 try (PreparedStatement pStmt = con.prepareStatement(query)) {

14 for (int i = 0; i < params.length; i++)

15 pStmt.setObject(i, params[i]);

16 ResultSet rs = pStmt.executeQuery();

17 while (rs.next()) System.out.println (rs.getInt("itemCount"));

18 } catch (SQLException e){ }

Assuming there is a valid Connection object and the SQL query will
produce at least one row, what is the result?
a. Each itemCount value for customer Bob Smith

b. Compiler error

c. A run time error
d. A SQLException

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In this practice, you will refactor the existing memory-based DAO from Exceptions and
Assertions to use JDBC instead. An interactive client is provided so you can experiment with
creating, reading, updating, and deleting records by using JDBC.

Java SE 7 Programming 14 - 39

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practice 14-2 Overview:
Using the Data Access Object Pattern

This practice covers the following topics:

• Refactoring the memory-based DAO application to use
JDBC.

• Using the interactive Employee client application, test your
code.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Localization

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 15 - 2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

• Describe the advantages of localizing an application

• Define what a locale represents
• Read and set the locale by using the Locale object

• Build a resource bundle for each locale

• Call a resource bundle from an application

• Change the locale for a resource bundle
• Format text for localization by using NumberFormat and

DateFormat

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Localization is the process of adapting software for a specific region or language by adding
locale-specific components and translating text.

In addition to language changes, culturally dependent elements, such as dates, numbers,
currencies, and so on must be translated.

The goal is to design for localization so that no coding changes are required.

Java SE 7 Programming 15 - 3

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Why Localize?

The decision to create a version of an application for
international use often happens at the start of a development
project.

• Region- and language-aware software

• Dates, numbers, and currencies formatted for specific
countries

• Ability to plug in country-specific data without changing
code

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In the remainder of this lesson, this simple text-based user interface will be localized for French,
Simplified Chinese, and Russian. Enter the number indicated by the menu and that menu option
will be applied to the application. Enter q to exit the application.

Java SE 7 Programming 15 - 4

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

A Sample Application

Localize a sample application:

• Text-based user interface

• Localize menus

• Display currency and date localizations

=== Localization App ===

1. Set to English

2. Set to French

3. Set to Chinese

4. Set to Russian

5. Show me the date

6. Show me the money!

q. Enter q to quit

Enter a command:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

In Java, a locale is specified by using two values: language and country. See the Java Tutorial for
standards used:
http://download.oracle.com/javase/tutorial/i18n/locale/create.html

Language Samples

• de: German

• en: English

• fr: French

• zh: Chinese

Country Samples

• DE: Germany

• US: United States

• FR: France

• CN: China

Java SE 7 Programming 15 - 5

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Locale

A Locale specifies a particular language and country:

• Language
– An alpha-2 or alpha-3 ISO 639 code

– “en” for English, “es” for Spanish

– Always uses lowercase

• Country
– Uses the ISO 3166 alpha-2 country code or UN M.49

numeric area code

– "US" for United States, "ES" for Spain

– Always uses uppercase

• See The Java Tutorials for details of all standards used

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Design for localization begins by designing the application so that all the text, sounds, and images
can be replaced at run time with the appropriate elements for the region and culture desired.
Resource bundles contain key/value pairs that can be hard-coded within a class or located in a
.properties file.

Java SE 7 Programming 15 - 6

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Resource Bundle

• The ResourceBundle class isolates locale-specific data:
– Returns key/value pairs stored separately
– Can be a class or a .properties file

• Steps to use:
– Create bundle files for each locale.

– Call a specific locale from your application.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The slide shows a sample resource bundle file for this application. Each menu option has been
converted into a name/value pair. This is the default file for the application. For alternative
languages, a special naming convention is used:

MessageBundle_xx_YY.properties

where xx is the language code and YY is the country code.

Java SE 7 Programming 15 - 7

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Resource Bundle File

• Properties file contains a set of key/value pairs.
– Each key identifies a specific application component.

– Special file names use language and country codes.

• Default for sample application:
– Menu converted into resource bundle

MessageBundle.properties

menu1 = Set to English

menu2 = Set to French

menu3 = Set to Chinese

menu4 = Set to Russian

menu5 = Show the Date

menu6 = Show me the money!

menuq = Enter q to quit

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The slide shows the resource bundle files for French and Chinese. Note that the file names
include both language and country. The English menu item text has been replaced with French
and Chinese alternatives.

Java SE 7 Programming 15 - 8

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Sample Resource Bundle Files

Samples for French and Chinese
MessagesBundle_fr_FR.properties

menu1 = Régler à l'anglais

menu2 = Régler au français

menu3 = Réglez chinoise

menu4 = Définir pour la Russie

menu5 = Afficher la date

menu6 = Montrez-moi l'argent!

menuq = Saisissez q pour quitter

MessagesBundle_zh_CN.properties

menu1 = 设置为英语

menu2 = 设置为法语

menu3 = 设置为中文

menu4 = 设置到俄罗斯

menu5 = 显示日期

menu6 = 显示我的钱！

menuq = 输入q退出

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: c

Java SE 7 Programming 15 - 9

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Which bundle file represents a language of Spanish and a
country code of US?
a. MessagesBundle_ES_US.properties

b. MessagesBundle_es_es.properties

c. MessagesBundle_es_US.properties

d. MessagesBundle_ES_us.properties

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

With the resource bundles created, you simply need to load the bundles into the application. The
source code in the slide shows the steps. First, create a Locale object that specifies the
language and country. Then load the resource bundle by specifying the base file name for the
bundle and the current Locale.

Note that there are a couple of ways to define a Locale. The Locale class includes default
constants for some countries. If a constant is not available, you can use the language code with
the country code to define the location. Finally, you can use the getDefault() method to get the
default location.

Java SE 7 Programming 15 - 10

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Initializing the Sample Application

PrintWriter pw = new PrintWriter(System.out, true);

// More init code here

Locale usLocale = Locale.US;

Locale frLocale = Locale.FRANCE;

Locale zhLocale = new Locale("zh", "CN");

Locale ruLocale = new Locale("ru", "RU");

Locale currentLocale = Locale.getDefault();

ResourceBundle messages = ResourceBundle.getBundle("MessagesBundle",
currentLocale);

// more init code here

public static void main(String[] args){

SampleApp ui = new SampleApp();

ui.run();

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

For this application, a run method contains the main loop. The loop runs until the letter “q” is typed
in as input. A string switch is used to perform an operation based on the number entered. A simple
call is made to each method to make locale changes and display formatted output.

Java SE 7 Programming 15 - 11

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Sample Application: Main Loop

public void run(){

String line = "";

while (!(line.equals("q"))){

this.printMenu();

try { line = this.br.readLine(); }

catch (Exception e){ e.printStackTrace(); }

switch (line){

case "1": setEnglish(); break;

case "2": setFrench(); break;

case "3": setChinese(); break;

case "4": setRussian(); break;

case "5": showDate(); break;

case "6": showMoney(); break;

}

}

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Instead of printing text, the resource bundle (messages) is called and the current Locale
determines what language is presented to the user.

Java SE 7 Programming 15 - 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

The printMenu Method

Instead of text, resource bundle is used.
• messages is a resource bundle.

• A key is used to retrieve each menu item.
• Language is selected based on the Locale setting.

public void printMenu(){

pw.println("=== Localization App ===");

pw.println("1. " + messages.getString("menu1"));

pw.println("2. " + messages.getString("menu2"));

pw.println("3. " + messages.getString("menu3"));

pw.println("4. " + messages.getString("menu4"));

pw.println("5. " + messages.getString("menu5"));

pw.println("6. " + messages.getString("menu6"));

pw.println("q. " + messages.getString("menuq"));

System.out.print(messages.getString("menucommand")+" ");

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

After the menu bundle is updated with the correct locale, the interface text is output by using the
currently selected language.

Java SE 7 Programming 15 - 13

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Changing the Locale

To change the Locale:

• Set currentLocale to the desired language.

• Reload the bundle by using the current locale.

public void setFrench(){

currentLocale = frLocale;

messages = ResourceBundle.getBundle("MessagesBundle",
currentLocale);

}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The updated user interface is shown in the slide. The first and last lines of the application could be
localized as well.

Java SE 7 Programming 15 - 14

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Sample Interface with French

After the French option is selected, the updated user interface
looks like the following:

=== Localization App ===

1. Régler à l'anglais

2. Régler au français

3. Réglez chinoise

4. Définir pour la Russie

5. Afficher la date

6. Montrez-moi l'argent!

q. Saisissez q pour quitter

Entrez une commande:

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Changing text is not the only available localization tool. Dates and numbers can also be formatted
based on local standards.

Java SE 7 Programming 15 - 15

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Format Date and Currency

• Numbers can be localized and displayed in their local
format.

• Special format classes include:
– DateFormat

– NumberFormat

• Create objects using Locale.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Before any formatting can take place, date and number objects must be set up. Both today’s date
and a Double object are used in this application.

Java SE 7 Programming 15 - 16

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Initialize Date and Currency

The application can show a local formatted date and currency.
The variables are initialized as follows:

// More init code precedes

NumberFormat currency;

Double money = new Double(1000000.00);

Date today = new Date();

DateFormat df;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Create a date format object by using the locale and the date is formatted for the selected locale.

Java SE 7 Programming 15 - 17

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Displaying a Date

• Format a date:
– Get a DateFormat object based on the Locale.

– Call the format method passing the date to format.

public void showDate(){

df = DateFormat.getDateInstance(DateFormat.DEFAULT, currentLocale);

pw.println(df.format(today) + " " + currentLocale.toString());

}

• Sample dates:

20 juil. 2011 fr_FR

20.07.2011 ru_RU

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

The DateFormat object includes a number of constants you can use to format the date output.

The SimpleDateFormat class is a subclass of DateFormat and allows you a great deal of
control over the date output. See documentation for all the available options.

In some cases, the number of letters can determine the output. For example, with month:

MM 07

MMM Jul

MMMM July

Java SE 7 Programming 15 - 18

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Customizing a Date

• DateFormat constants include:
– SHORT: Is completely numeric, such as 12.13.52 or 3:30pm

– MEDIUM: Is longer, such as Jan 12, 1952

– LONG: Is longer, such as January 12, 1952 or 3:30:32pm

– FULL: Is completely specified, such as Tuesday, April 12,
1952 AD or 3:30:42pm PST

• SimpleDateFormat:

– A subclass of a DateFormat class

Letter Date or Time Presentation Examples

G Era Text AD

y Year Year 1996; 96

M Month in Year Month July; Jul; 07

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Create a NumberFormat object by using the selected locale and get formatted output.

Java SE 7 Programming 15 - 19

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Displaying Currency

• Format currency:
– Get a currency instance from NumberFormat.

– Pass the Double to the format method.

public void showMoney(){

currency = NumberFormat.getCurrencyInstance(currentLocale);

pw.println(currency.format(money) + " " + currentLocale.toString());

}

• Sample currency output:
1 000 000 руб. ru_RU
1 000 000,00 € fr_FR

￥1,000,000.00 zh_CN

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Answer: b

Java SE 7 Programming 15 - 20

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Quiz

Which date format constant provides the most detailed
information?
a. LONG

b. FULL

c. MAX

d. COMPLETE

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 15 - 21

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Describe the advantages of localizing an application

• Define what a locale represents
• Read and set the locale by using the Locale object

• Build a resource bundle for each locale

• Call a resource bundle from an application

• Change the locale for a resource bundle

• Format text for localization by using
NumberFormat and DateFormat

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 15 - 22

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practice 15-1 Overview:
Creating a Localized Date Application

This practice covers creating a localized application that
displays dates in a variety of formats.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming 15 - 23

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

(Optional) Practice 15-2 Overview:
Localizing a JDBC Application

This practice covers creating a localized version of the JDBC
application from the previous lesson.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

SQL Primer

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

• Describe the syntax of basic SQL-92/1999 commands,
including:
– SELECT

– INSERT

– UPDATE

– DELETE

– CREATE TABLE

– DROP TABLE

• Define basic SQL-92/1999
data types

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 3

In a relational database, you do not specify the access route to the tables, and you do not
need to know how the data is arranged physically.

To access the database, you execute a structured query language (SQL) statement, which is
the American National Standards Institute (ANSI) standard language for operating relational
databases. SQL is a set of statements with which all programs and users access data in an
Oracle Database. Application programs and Oracle tools often allow users access to the
database without using SQL directly, but these applications, in turn, must use SQL when
executing the user’s request.

SQL provides statements for a variety of tasks, including:

• Querying data

• Inserting, updating, and deleting rows in a table

• Creating, replacing, altering, and dropping objects

• Controlling access to the database and its objects

• Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language and enables you to work
with data at a logical level.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Using SQL to Query Your Database

Structured query language (SQL) is:

• The ANSI standard language for operating relational
databases

• Efficient, easy to learn, and use

• Functionally complete (With SQL, you can define, retrieve,
and manipulate data in the tables.)

SELECT department_name
FROM departments;

Database

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 4

SQL statements supported by Oracle comply with industry standards. Oracle Corporation
ensures future compliance with evolving standards by actively involving key personnel in SQL
standards committees. The industry-accepted committees are ANSI and International
Standards Organization (ISO). Both ANSI and ISO have accepted SQL as the standard
language for relational databases.

Statement Description

SELECT
INSERT
UPDATE
DELETE
MERGE

Retrieves data from the database, enters new rows, changes existing rows, and
removes unwanted rows from tables in the database, respectively. Collectively
known as data manipulation language (DML)

CREATE
ALTER
DROP
RENAME
TRUNCATE
COMMENT

Sets up, changes, and removes data structures from tables. Collectively known as
data definition language (DDL)

GRANT
REVOKE

Provides or removes access rights to both the Oracle Database and the structures
within it

COMMIT
ROLLBACK
SAVEPOINT

Manages the changes made by DML statements. Changes to the data can be
grouped together into logical transactions

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

SQL Statements

SELECT
INSERT
UPDATE
DELETE
MERGE

CREATE
ALTER
DROP
RENAME
TRUNCATE
COMMENT

GRANT
REVOKE

COMMIT
ROLLBACK
SAVEPOINT

Data manipulation language (DML)

Data definition language (DDL)

Transaction control

Data control language (DCL)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 5

In its simplest form, a SELECT statement must include the following:

• A SELECT clause, which specifies the columns to be displayed

• A FROM clause, which identifies the table containing the columns that are listed in the
SELECT clause

In the syntax:

SELECT Is a list of one or more columns

* Selects all columns

DISTINCT Suppresses duplicates

column|expression Selects the named column or the expression

alias Gives the selected columns different headings

FROM table Specifies the table containing the columns

.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Basic SELECT Statement

• SELECT identifies the columns to be displayed.

• FROM identifies the table containing those columns.

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 6

Note: Throughout this course, the words keyword, clause, and statement are used as follows:
• A keyword refers to an individual SQL element—for example, SELECT and FROM are

keywords.
• A clause is a part of a SQL statement—for example, SELECT employee_id,

last_name, and so on.

• A statement is a combination of two or more clauses—for example, SELECT * FROM
employees

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 7

You can restrict the rows that are returned from the query by using the WHERE clause. A
WHERE clause contains a condition that must be met and it directly follows the FROM clause. If
the condition is true, the row meeting the condition is returned.

In the syntax:
WHERE Restricts the query to rows that meet a condition

condition Is composed of column names, expressions,
constants, and a comparison operator. A condition
specifies a combination of one or more expressions and logical
(Boolean) operators, and returns a value of TRUE, FALSE, or
UNKNOWN.

The WHERE clause can compare values in columns, literal, arithmetic expressions, or
functions. It consists of three elements:

• Column name
• Comparison condition
• Column name, constant, or list of values

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Limiting the Rows That Are Selected

• Restrict the rows that are returned by using the WHERE
clause:

• The WHERE clause follows the FROM clause.

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table
[WHERE condition(s)];

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 8

The order of rows that are returned in a query result is undefined. The ORDER BY clause can
be used to sort the rows. However, if you use the ORDER BY clause, it must be the last clause
of the SQL statement. Further, you can specify an expression, an alias, or a column position
as the sort condition.

Syntax
SELECT expr
FROM table
[WHERE condition(s)]
[ORDER BY {column, expr, numeric_position} [ASC|DESC]];

In the syntax:
ORDER BY specifies the order in which the retrieved rows are displayed
ASC orders the rows in ascending order (This is the default order.)
DESC orders the rows in descending order

If the ORDER BY clause is not used, the sort order is undefined, and the Oracle server may not
fetch rows in the same order for the same query twice. Use the ORDER BY clause to display
the rows in a specific order.
Note: Use the keywords NULLS FIRST or NULLS LAST to specify whether returned rows
containing null values should appear first or last in the ordering sequence.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Using the ORDER BY Clause

• Sort the retrieved rows with the ORDER BY clause:
– ASC: Ascending order, default

– DESC: Descending order

• The ORDER BY clause comes last in the SELECT
statement:

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date ;

…

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 9

You can add new rows to a table by issuing the INSERT statement.

In the syntax:

table Is the name of the table

column Is the name of the column in the table to populate

value Is the corresponding value for the column

Note: This statement with the VALUES clause adds only one row at a time to a table.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

INSERT Statement Syntax

• Add new rows to a table by using the INSERT statement:

• With this syntax, only one row is inserted at a time.

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 10

You can modify the existing values in a table by using the UPDATE statement.

In the syntax:

table Is the name of the table

column Is the name of the column in the table to populate

value Is the corresponding value or subquery for the column

condition Identifies the rows to be updated and is composed of column names,
expressions, constants, subqueries, and comparison operators

Confirm the update operation by querying the table to display the updated rows.

Note: In general, use the primary key column in the WHERE clause to identify a single row for
update. Using other columns can unexpectedly cause several rows to be updated. For
example, identifying a single row in the EMPLOYEES table by name is dangerous, because
more than one employee may have the same name.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

UPDATE Statement Syntax

• Modify existing values in a table with the UPDATE
statement:

• Update more than one row at a time (if required).

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 11

DELETE Statement Syntax

You can remove existing rows from a table by using the DELETE statement.

In the syntax:

table Is the name of the table

condition Identifies the rows to be deleted, and is composed of column names,
expressions, constants, subqueries, and comparison operators

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

DELETE Statement

You can remove existing rows from a table by using the
DELETE statement:

DELETE [FROM] table
[WHERE condition];

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 12

You create tables to store data by executing the SQL CREATE TABLE statement. This
statement is one of the DDL statements that are a subset of the SQL statements used to
create, modify, or remove Oracle Database structures. These statements have an immediate
effect on the database and they also record information in the data dictionary.

To create a table, a user must have the CREATE TABLE privilege and a storage area in which
to create objects. The database administrator (DBA) uses data control language (DCL)
statements to grant privileges to users.

In the syntax:

schema Is the same as the owner’s name

table Is the name of the table

DEFAULT expr Specifies a default value if a value is omitted in the INSERT
statement

column Is the name of the column

datatype Is the column’s data type and length

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

CREATE TABLE Statement

• You must have:
– The CREATE TABLE privilege

– A storage area

• You specify:
– The table name

– The column name, column data type, and column size

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr][, ...]);

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 13

The slide gives the syntax for defining constraints when creating a table. You can create
constraints at either the column level or table level. Constraints defined at the column level
are included when the column is defined. Table-level constraints are defined at the end of the
table definition and must refer to the column or columns on which the constraint pertains in a
set of parentheses. It is mainly the syntax that differentiates the two; otherwise, functionally, a
column-level constraint is the same as a table-level constraint.

NOT NULL constraints must be defined at the column level.

Constraints that apply to more than one column must be defined at the table level.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Defining Constraints

• Syntax:

• Column-level constraint syntax:

• Table-level constraint syntax:

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr]
[column_constraint],
...
[table_constraint][,...]);

column,...
[CONSTRAINT constraint_name] constraint_type
(column, ...),

column [CONSTRAINT constraint_name] constraint_type,

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 14

In the syntax:

schema Is the same as the owner’s name

table Is the name of the table

DEFAULT expr Specifies a default value to be used if a value is omitted in the

INSERT statement

column Is the name of the column

datatype Is the column’s data type and length

column_constraint Is an integrity constraint as part of the column definition

table_constraint Is an integrity constraint as part of the table definition

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 15

Constraints are usually created at the same time as the table. Constraints can be added to a
table after its creation and also be temporarily disabled.

Both examples in the slide create a primary key constraint on the EMPLOYEE_ID column of
the EMPLOYEES table.

1. The first example uses the column-level syntax to define the constraint.

2. The second example uses the table-level syntax to define the constraint.

More details about the primary key constraint are provided later in this lesson.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Defining Constraints

• Example of a column-level constraint:

• Example of a table-level constraint:

CREATE TABLE employees(
employee_id NUMBER(6)
CONSTRAINT emp_emp_id_pk PRIMARY KEY,

first_name VARCHAR2(20),
...);

CREATE TABLE employees(
employee_id NUMBER(6),
first_name VARCHAR2(20),
...
job_id VARCHAR2(10) NOT NULL,
CONSTRAINT emp_emp_id_pk
PRIMARY KEY (EMPLOYEE_ID));

1

2

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 16

Constraints

The Oracle server uses constraints to prevent invalid data entry into tables.

You can use constraints to do the following:

• Enforce rules on the data in a table whenever a row is inserted, updated, or deleted from
that table. The constraint must be satisfied for the operation to succeed.

• Prevent the deletion of a table if there are dependencies from other tables.

• Provide rules for Oracle tools, such as Oracle Developer.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Including Constraints

• Constraints enforce rules at the table level.

• Constraints prevent the deletion of a table if there
are dependencies.

• The following constraint types are valid:
– NOT NULL

– UNIQUE

– PRIMARY KEY

– FOREIGN KEY

– CHECK

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Data Integrity Constraints

Java SE 7 Programming A - 17

Constraint Description

NOT NULL Specifies that the column cannot contain a null value

UNIQUE Specifies a column or combination of columns whose values
must be unique for all rows in the table

PRIMARY KEY Uniquely identifies each row of the table

FOREIGN KEY Establishes and enforces a referential integrity between the
column and a column of the referenced table such that values
in one table match values in another table.

CHECK Specifies a condition that must be true

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 18

Data Types

When you identify a column for a table, you need to provide a data type for the column. There
are several data types available:

Data Type Description

VARCHAR2(size)

Variable-length character data (A maximum size must be
specified: minimum size is 1; maximum size is 4,000.)

CHAR [(size)] Fixed-length character data of length size bytes (Default and
minimum size is 1; maximum size is 2,000.)

NUMBER [(p,s)] Number having precision p and scale s (Precision is the total
number of decimal digits and scale is the number of digits to
the right of the decimal point; precision can range from 1 to
38, and scale can range from –84 to 127.)

DATE Date and time values to the nearest second between January 1,
4712 B.C., and December 31, 9999 A.D.

LONG Variable-length character data (up to 2 GB)

CLOB Character data (up to 4 GB)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Data Types

Raw binary dataRAW and LONG
RAW

Binary data (up to 4 GB)BLOB

Binary data stored in an external file (up to 4 GB)BFILE

Date and time valuesDATE

Variable-length character data (up to 2 GB)LONG

Character data (up to 4 GB)CLOB

A base-64 number system representing the unique
address of a row in its table

ROWID

Fixed-length character dataCHAR(size)

Variable-length numeric dataNUMBER(p,s)

Variable-length character dataVARCHAR2(size)

DescriptionData Type

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 19

Data Type Description

RAW(size) Raw binary data of length size (A maximum size must be specified: maximum
size is 2,000.)

LONG RAW Raw binary data of variable length (up to 2 GB)

BLOB Binary data (up to 4 GB)

BFILE Binary data stored in an external file (up to 4 GB)

ROWID A base-64 number system representing the unique address of a row in its table

Guidelines

• A LONG column is not copied when a table is created using a subquery.

• A LONG column cannot be included in a GROUP BY or an ORDER BY clause.

• Only one LONG column can be used per table.

• No constraints can be defined on a LONG column.

• You might want to use a CLOB column rather than a LONG column.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 20

The DROP TABLE statement moves a table to the recycle bin or removes the table and all its
data from the database entirely. Unless you specify the PURGE clause, the DROP TABLE
statement does not result in space being released back to the tablespace for use by other
objects, and the space continues to count toward the user’s space quota. Dropping a table
invalidates the dependent objects and removes object privileges on the table.

When you drop a table, the database loses all the data in the table and all the indexes
associated
with it.

Syntax

DROP TABLE table [PURGE]

In the syntax, table is the name of the table.

Guidelines

• All the data is deleted from the table.

• Any views and synonyms remain, but are invalid.

• Any pending transactions are committed.
• Only the creator of the table or a user with the DROP ANY TABLE privilege can remove a

table.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Dropping a Table

• Moves a table to the recycle bin
• Removes the table and all its data entirely if the PURGE

clause is specified

• Invalidates dependent objects and removes object
privileges on the table

DROP TABLE dept80;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Java SE 7 Programming A - 21

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Describe the syntax of basic SQL-92/1999 commands,
including:
– SELECT

– INSERT

– UPDATE

– DELETE

– CREATE TABLE

– DROP TABLE

• Define basic SQL-92/1999 data types

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

	Java SE 7 Programming - Student Guide - Volume II
	Table of Contents
	Lesson 9: Exceptions and Assertions
	Objectives
	Error Handling
	Exception Handling in Java
	The try-catch Statement
	Exception Objects
	Exception Categories
	Quiz
	Handling Exceptions
	The finally Clause
	The try-with-resources Statement
	Suppressed Exceptions
	The AutoCloseable Interface
	Catching Multiple Exceptions
	Declaring Exceptions
	Handling Declared Exceptions
	Throwing Exceptions
	Custom Exceptions
	Quiz
	Wrapper Exceptions
	Revisiting the DAO Pattern
	Assertions
	Assertion Syntax
	Internal Invariants
	Control Flow Invariants
	Postconditions and Class Invariants
	Controlling Runtime Evaluation of Assertions
	Quiz
	Summary
	Practice 9-1 Overview: Catching Exceptions
	Practice 9-2 Overview: Extending Exception

	Lesson 10: Java I/O Fundamentals
	Objectives
	Java I/O Basics
	I/O Streams
	I/O Application
	Data Within Streams
	Byte Stream InputStream Methods
	Byte Stream OutputStream Methods
	Byte Stream Example
	Character Stream Reader Methods
	Character Stream Writer Methods
	Character Stream Example
	I/O Stream Chaining
	Chained Streams Example
	Processing Streams
	Console I/O
	java.io.Console
	Writing to Standard Output
	Reading from Standard Input
	Channel I/O
	Practice 10-1 Overview: Writing a Simple Console I/O Application
	Persistence
	Serialization and Object Graphs
	Transient Fields and Objects
	Transient: Example
	Serial Version UID
	Serialization Example
	Writing and Reading an Object Stream
	Serialization Methods
	readObject Example
	Summary
	Quiz
	Practice 10-2 Overview: Serializing and Deserializing a ShoppingCart

	Lesson 11: Java File I/O (NIO.2)
	Objectives
	New File I/O API (NIO.2)
	Limitations of java.io.File
	File Systems
	Relative Path Versus Absolute Path
	Symbolic Links
	Java NIO.2 Concepts
	Path Interface
	Path Interface Features
	Path: Example
	Removing Redundancies from a Path
	Creating a Subpath
	Joining Two Paths
	Creating a Path Between Two Paths
	Working with Links
	Quiz
	File Operations
	Checking a File or Directory
	Creating Files and Directories
	Deleting a File or Directory
	Copying a File or Directory
	Copying Between a Stream and Path
	Moving a File or Directory
	Listing a Directory’s Contents
	Reading/Writing All Bytes or Lines from a File
	Channels and ByteBuffers
	Random Access Files
	Buffered I/O Methods for Text Files
	Byte Streams
	Managing Metadata
	File Attributes (DOS)
	DOS File Attributes: Example
	POSIX Permissions
	Quiz
	Practice 11-1 Overview: Writing a File Merge Application
	Recursive Operations
	FileVisitor Method Order
	Example: WalkFileTreeExample
	Finding Files
	PathMatcher Syntax and Pattern
	PathMatcher: Example
	Finder Class
	Other Useful NIO.2 Classes
	Moving to NIO.2
	Summary
	Quiz
	Practice 11-2 Overview: Recursive Copy
	(Optional) Practice 11-3 Overview: Using PathMatcher to Recursively Delete

	Lesson 12: Threading
	Objectives
	Task Scheduling
	Why Threading Matters
	The Thread Class
	Extending Thread
	Starting a Thread
	Implementing Runnable
	Executing Runnable Instances
	A Runnable with Shared Data
	One Runnable: Multiple Threads
	Quiz
	Problems with Shared Data
	Nonshared Data
	Quiz
	Atomic Operations
	Out-of-Order Execution
	Quiz
	The volatile Keyword
	Stopping a Thread
	The synchronized Keyword
	synchronized Methods
	synchronized Blocks
	Object Monitor Locking
	Detecting Interruption
	Interrupting a Thread
	Thread.sleep()
	Quiz
	Additional Thread Methods
	Methods to Avoid
	Deadlock
	Summary
	Practice 12-1 Overview: Synchronizing Access to Shared Data
	Practice 12-2 Overview: Implementing a Multithreaded Program

	Lesson 13: Concurrency
	Objectives
	The java.util.concurrent Package
	The java.util.concurrent.atomic Package
	The java.util.concurrent.locks Package
	java.util.concurrent.locks
	Thread-Safe Collections
	Quiz
	Synchronizers
	java.util.concurrent.CyclicBarrier
	High-Level Threading Alternatives
	java.util.concurrent.ExecutorService
	java.util.concurrent.Callable
	java.util.concurrent.Future
	Shutting Down an ExecutorService
	Quiz
	Concurrent I/O
	A Single-Threaded Network Client
	A Multithreaded Network Client (Part 1)
	A Multithreaded Network Client (Part 2)
	A Multithreaded Network Client (Part 3)
	A Multithreaded Network Client (Part 4)
	A Multithreaded Network Client (Part 5)
	Parallelism
	Without Parallelism
	Naive Parallelism
	The Need for the Fork-Join Framework
	Work-Stealing
	A Single-Threaded Example
	java.util.concurrent.ForkJoinTask<V>
	RecursiveTask Example
	compute Structure
	compute Example (Below Threshold)
	compute Example (Above Threshold)
	ForkJoinPool Example
	Fork-Join Framework Recommendations
	Quiz
	Summary
	(Optional) Practice 13-1 Overview: Using the java.util.concurrent Package
	(Optional) Practice 13-2 Overview: Using the Fork-Join Framework

	Lesson 14: Building Database Applications with JDBC
	Objectives
	Using the JDBC API
	Using a Vendor’s Driver Class
	Key JDBC API Components
	Using a ResultSet Object
	Putting It All Together
	Writing Portable JDBC Code
	The SQLException Class
	Closing JDBC Objects
	The try-with-resources Construct
	try-with-resources: Bad Practice
	Writing Queries and Getting Results
	Practice 14-1 Overview: Working with the Derby Database and JDBC
	ResultSetMetaData
	Getting a Row Count
	Controlling ResultSet Fetch Size
	Using PreparedStatement
	Using CallableStatement
	What Is a Transaction?
	ACID Properties of a Transaction
	Transferring Without Transactions
	Successful Transfer with Transactions
	Unsuccessful Transfer with Transactions
	JDBC Transactions
	RowSet 1.1: RowSetProvider and RowSetFactory
	Using RowSet 1.1 RowSetFactory
	Example: Using JdbcRowSet
	Data Access Objects
	The Data Access Object Pattern
	Summary
	Quiz
	Practice 14-2 Overview: Using the Data Access Object Pattern

	Lesson 15: Localization
	Objectives
	Why Localize?
	A Sample Application
	Locale
	Resource Bundle
	Resource Bundle File
	Sample Resource Bundle Files
	Quiz
	Initializing the Sample Application
	Sample Application: Main Loop
	The printMenu Method
	Changing the Locale
	Sample Interface with French
	Format Date and Currency
	Initialize Date and Currency
	Displaying a Date
	Customizing a Date
	Displaying Currency
	Quiz
	Summary
	Practice 15-1 Overview: Creating a Localized Date Application
	(Optional) Practice 15-2 Overview: Localizing a JDBC Application

	Appendix A: SQL Primer
	Objectives
	Using SQL to Query Your Database
	SQL Statements
	Basic SELECT Statement
	Limiting the Rows That Are Selected
	Using the ORDER BY Clause
	INSERT Statement Syntax
	UPDATE Statement Syntax
	DELETE Statement
	CREATE TABLE Statement
	Defining Constraints
	Including Constraints
	Data Types
	Dropping a Table
	Summary

